Skip to main content
Log in

A QoS routing strategy using fuzzy logic for NGEO satellite IP networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We present a fuzzy satellite routing strategy (FSRS) for NGEO satellite IP networks to meet multi-class QoS demands. A set of fuzzy rules is established to map the congestion degrees and the linguistic variables. For every queue in a satellite, an output of the fuzzy logic is present to reflect the queue congestion degree called fuzzy queue congestion indicator (FQCI). For a satellite, three FQCIs are synthesised to obtain a Fuzzy Satellite Congestion Indicator (FSCI). One shortest end-to-end delay path and one alternative path are pre-calculated. And the real-time queuing delay is predicted by means of queuing theory and naive bayesian method. With the FSCI, the neighbouring satellites adjust transmission modes. Moreover, packets of different QoS could be treated discriminatively. A series of simulations were conducted in Network Simulator (Version 2.34) to verify the congestion alleviation effect. Simulation shows that FSRS performs better in terms of end to end delay, throughput, packet loss rate and traffic distribution, especially, it generates more a smooth shape for high class traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akyildiz, I., Ekici, E., & Bender, M. (2002). MLSR: A novel routing algorithm for multilayered satellite IP networks. IEEE/ACM Transactions on Networking, 10(3), 411–424.

    Article  Google Scholar 

  2. An, J., Pangalos, P., & Aghvami, A. H. (2012). Fuzzy Non-dominance multipath link-state routing framework for network routing management with inaccurate information. In GLOBECOM, IEEE (pp. 886–890).

  3. Attar, A., Tang, H., Vasilakos, A., Yu, F., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  4. Bai, J., Lu, X., Lu, Z., & Peng, W. (2005). Compact explicit multi-path routing for LEO satellite networks. In 2005 Workshop on high performance switching and routing (pp. 386–390).

  5. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via quality of routing games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, H. S., Kim, B. W., & Lee, C. G. (1996). Performance comparison of optimal routing and dynamic routing in low-earth orbit satellite networks. IEEE Vehicular Technology Conference, 1, 1240–1243.

    Google Scholar 

  7. De Rango, F., Tropea, M., Santarnaria, A. F., & Marano, S. (2007). An enhanced Qos CBT multicast routing protocol based on genetic algorithm in a hybrid hap-satellite system. Computer Communications, 30(16), 3126–3143. doi:10.1016/j.comcom.2007.05.058.

    Article  Google Scholar 

  8. Duarte, P., Fadlullah, Z., Vasilakos, A., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  9. Hutcheson, J., & Laurin, M. (1995). Network flexibility of the iridium global mobile satellite system. In Proceedings of 4th international mobile satellite conference Otawa, Canada.

  10. Lee, J., & Kang, S. (2000). Satellite over satellite (sos) network: A novel architecture for satellite network. In INFOCOM 2000 nineteenth annual joint conference of the IEEE Computer and Communications Societies Proceedings IEEE, vol. 1, pp. 315–321.

  11. Li, C., Anavatti, S. G., & Ray, T. (2014). Analytical hierarchy process using fuzzy inference technique for real-time route guidance system. IEEE Transactions on Intelligent Transportation Systems, 15(1), 84–93. doi:10.1109/TITS.2013.2272579.

    Article  Google Scholar 

  12. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, pp. 100–108.

  13. Li, P., Guo, S., Yu, S., & Vasilakos, A. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  14. Liu, L., Song, Y., Ma, H., & Zhang, X. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  15. Liu, L., Song, Y., Zhang, H., & Ma, H. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  MATH  Google Scholar 

  16. Lu, Y., Zhao, Y., Sun, F., Li, H., & Wang, D. (2013). Dynamic Fault-tolerant routing based on FSA for LEO satellite networks. IEEE Transactions on Computers, 62(10), 1945–1958. doi:10.1109/TC.2012.127.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, Y., Zhao, Y., Sun, F., & Li, H. (2014). A survivable routing protocol for two-layered LEO/MEO satellite networks. Wireless Networks, 20(5), 871–887. doi:10.1007/s11276-013-0656-z.

    Article  Google Scholar 

  18. Marwaha, S., Srinivasan, D., Chen, K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Evolutionary computation, pp. 1964–1971.

  19. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE TC.

  20. Mohorcic, M., Werner, M., Svigelj, A., & Kandus, G. (2002). Adaptive routing for packet-oriented intersatellite link networks: Performance in various traffic scenarios. IEEE Transactions on Wireless Communications, 1(4), 808–818. doi:10.1109/TWC.2002.804176.

    Article  Google Scholar 

  21. Passino, K. M., & Yurkovich, S. (1998). Fuzzy control. Addison Welson Longman Inc.

  22. Quan, W., Xu, C., Vasilakos, A., & Guan, J. (2014). Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. In IFIP networking.

  23. Song, G., Chao, M., Yang, B., & Zheng, Y. (2014). TLR: a traffic-light-based intelligent routing strategy for NGEO satellite IP networks. IEEE Transactions on Wireless Communications, 13(6), 3380–3393. doi:10.1109/TWC.2014.041014.130040.

    Article  Google Scholar 

  24. Spyropoulos, T., Rao, N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  25. Svigelj, A., Mohorcic, M., Kandus, G., Kos, A., Pustisek, M., & Bester, J. (2004). Routing in ISl networks considering empirical IP traffic. IEEE Journal on Selected areas in Communications, 22(2), 261–272.

    Article  Google Scholar 

  26. Taleb, T., Jamalipour, A., Kato, N., & Nemoto, Y. (2005). IP traffic load distribution in NGEO broadband satellite networks—(Invited paper). In: ISCIS 2005, vol. 3733, pp. 113–123.

  27. Taleb, T., Mashimo, D., Jamalipour, A., Kato, N., & Nemoto, Y. (2009). Explicit load balancing technique for NGEO satellite IP networks with on-board processing capabilities. IEEE-ACM Transactions on Networking, 17(1), 281–293. doi:10.1109/TNET.2008.918084.

    Article  Google Scholar 

  28. Tang, W. S., & Chang, C. J. (2010). A fuzzy inter-ring route control with PRNN predictor bridged resilient packet rings. In GLOBECOM, IEEE.

  29. Vasilakos, A., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton, FL: CRC Press.

    Google Scholar 

  30. Wang, X., Vasilakos, A., Chen, M., Liu, Y., & Kwon, T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  31. Wood, L., Clerget, A., Andrikopoulos, I., Pavlou, G., & Dabbous, W. (2001). IP routing issues in satellite constellation networks. International Journal of Satellite Communications, 19(1), 69–92. doi:10.1002/sat.655.

    Article  Google Scholar 

  32. Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (2013). Routing in opportunistic networks. New York: Springer.

    Book  MATH  Google Scholar 

  33. Yao, Y., Cao, Q., & Vasilakos, A. (2013). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS, pp. 182–190.

  34. Yen, Y., Chao, H., Chang, R., & Vasilakos, A. (2011). Flooding-limited and multi-constrained qos multicast routing based on the genetic algorithm for manets. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  35. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  36. Zadeh, L. A. (1974). Outline of a new approach to the analysis of complex systems and decision processes. In IEEE Transactions on Systems, Man and Cybernetics SMC-3.

  37. Zeng, Y., Fan, H., & Xie, X. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  38. Zhou, B., Zhang, F., Wang, L., Hou, C., & Anta, A. F. (2016). Hdeer: A distributed routing scheme for energy-efficient networking. IEEE Journal on Selected Areas in Communications, 34(5), 1713–1727.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuqing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Liu, C., He, S. et al. A QoS routing strategy using fuzzy logic for NGEO satellite IP networks. Wireless Netw 24, 295–307 (2018). https://doi.org/10.1007/s11276-016-1326-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1326-8

Keywords

Navigation