Skip to main content
Log in

\(\hbox {S}^2\)DCC: secure selective dropping congestion control in hybrid wireless multimedia sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Thanks to the availability of miniaturized camera and microphones, nowadays Wireless Multimedia Sensor Networks (WMSNs) can sense and deliver audio/video signals from a target environment to remote analysis sites. Hence, new opportunity are disclosed for advanced applications in health care, surveillance, military, and traffic monitoring domains, to name a few. But, at the same time, due to the high volume of multimedia streams and the richness of information they bring, WMSNs incur critical issues in terms of congestion control, privacy, and security. These problems can be solved separately by adopting consolidated solutions conceived to address each of them. But one of the pivotal point of optimization in a Wireless Sensor Network is the possibility of exploiting a cross layer design. To bridge this gap, an integrated solution is proposed hereby, namely Secure Selective Dropping Congestion Control \((\hbox {S}^{2}\hbox {DCC})\), based on end-to-end ciphering, in-network selective data dropping, scalable multimedia encoding, and hierarchical and hybrid network design. Moreover, an open source implementation of \(\hbox {S}^{2}\hbox {DCC}\) has been developed in the Castalia simulator. The main outcomes of the performance evaluation show that \(\hbox {S}^{2}\hbox {DCC}\) is able to meet data security and privacy requirements and to improve the quality of the received images at the sink with respect to state of the art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The reader is referred to [7] for the tuning rules of the PI controller.

  2. The mean power consumption is reported as a mean of the overall consumption of sensor nodes acting in the network.

  3. Similar results have been obtained for Topology 2.

References

  1. Akyildiz, I., Melodia, T., & Chowdhury, K. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  2. Wan, C., Eisenman, S., & Campbell, A. (2003). CODA: Congestion detection and avoidance in sensor networks. In Proceedings of ACM SenSys, Los Angeles, California, USA.

  3. Patil, D., & Dhage, S. (2012). Priority-based congestion control protocol (PCCP) for controlling upstream congestion in wireless sensor network. In Proceedings of IEEE ICCICT, Mumbai, India.

  4. Sonmez, C., Isik, S., Donmez, M., Incel, O., & Ersoy, C. (2012). SUIT: A cross layer image transport protocol with fuzzy logic based congestion control for wireless multimedia sensor networks. In Proceedings of NTMS, Istanbul, Turkey.

  5. Politis, I., Tsagkaropoulos, M., Dagiuklas, T., & Kotsopoulos, S. (2008). A survey on wireless multimedia sensor networks. Mobile Network Applications, 13(3–4), 274–284.

    Google Scholar 

  6. Danyali, H., & Mertins, A. (2003). Fully spatial and SNR scalable. SPIHT-based image coding for transmission over heterogenous networks. Journal of Telecommunications and Information Technology, 2, 92–98.

    Google Scholar 

  7. Martelli, A., Grieco, L. A., Bacco, M., Boggia, G., & Camarda, P. (2011). Selective dropping congestion control for wireless multimedia sensor networks, In: Proceedings of IEEE Symposium on Computers and Communications, ISCC, Kerkira, Corfu, Greece.

  8. Misra, S., Reisslein, M., & Guoliang, X. (2008). A survey of multimedia streaming in wireless sensor networks. IEEE Communications Surveys Tutorials, 10(4), 18–39.

    Article  Google Scholar 

  9. Castalia simulator—official website. (2013). Accessed: 2013-04-14. URLhttp://castalia.research.nicta.com.au/index.php/en/

  10. Sicari, S., Grieco, L. A., Boggia, G., & Coen-Porsini, A. (2012). Dydap: A dynamic data aggregation scheme for privacy aware wireless sensor networks. Elsevier Journal of Systems and Software, 88(1), 152–166.

    Article  Google Scholar 

  11. Said, A., & Pearlman, W . A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250.

    Article  Google Scholar 

  12. Selcuk Uluagac, A., Beyah, R., & Copeland, J. (2013). Secure source-based loose synchronization (sobas) for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 24(4), 803–813.

    Article  Google Scholar 

  13. Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Gone: Dealing with node behavior. In: 5th IEEE international conference on consumer electronics, IEEE 2015 ICCE-Berlin.

  14. Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 247–269.

    Article  MathSciNet  MATH  Google Scholar 

  15. Nath, S., Gibbons, P., Seshan, S., & Anderson, Z. (2008). Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions on Sensor Networks, 4(2), 7:1–7:40.

    Article  Google Scholar 

  16. Passing, M., & Dressler, F. (2006). Experimental performance evaluation of cryptographic algorithms on sensor nodes. In: IEEE international conference on mobile adhoc and sensor systems (MASS), 2006, IEEE, pp. 882–887.

  17. Castelluccia, C., Mykletun, E., & Tsudik, G. (2005). Efficient aggregation of encrypted data in wireless sensor networks, In: The second annual international conference on mobile and ubiquitous systems: networking and services, 2005. MobiQuitous 2005, pp. 109–117.

  18. Chan, H., & Perrig, A. (2003). Security and privacy in sensor networks. IEEE Computer Magazine, 36(10), 103–105.

    Article  Google Scholar 

  19. Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022–2037.

    Article  MATH  Google Scholar 

  20. Grieco, L. A., Boggia, G., Sicari, S., & Colombo, P. (2009). Secure wireless multimedia sensor networks: A survey. In: Proceedings of UBICOMM, Sliema, Malta.

  21. Wang, W., Peng, D., Wang, H., & Sharif, H. (2007). A cross layer resource allocation scheme for secure image delivery in wireless sensor networks. In: Proceedings of ACM IWCMC, Honolulu, Hawaii, USA.

  22. Xu, Y., Xiong, L., Xu, Z., & Pan, S. (2014). A content security protection scheme in JPEG compressed domain. Journal of Visual Communication and Image Representation, 25(5), 805–813.

    Article  Google Scholar 

  23. Lang, J. (2012). Image encryption based on the reality preserving multiple parameter fractional fourier transform and chaos permutation. Optics and Lasers in Engineering, 50(7), 929–937.

    Article  Google Scholar 

  24. Naeem, E. A., Elnaby, M. M. A., Soliman, N. F., Abbas, A. M., Faragallah, O. S., Semary, N., et al. (2014). Efficient implementation of chaotic image encryption in transform domains. Journal of Systems and Software, 97, 118–127.

    Article  Google Scholar 

  25. Rao, K., Kumar, K., & Krishna, P. M. (2011). A new and secure cryptosystem for image encryption and decryption. IETE Journal of Research, 57(2), 165–171.

    Article  Google Scholar 

  26. Zhoua, N., Wang, Y., Gong, L., Chen, X., & Yang, Y. (2012). Novel color image encryption algorithm based on the reality preserving fractional mellin transform. Optics & Laser Technology, 44(7), 2270–2281.

    Article  Google Scholar 

  27. Telagarapu, P., Biswal, B., & Guntuku, V. (2011). Security of image in multimedia applications. In: Proceedings of international conference on energy, automation, and signal (ICEAS), Bhubaneswar, Odisha.

  28. Zhang, X., & Wang, X. (2013). Chaos-based partial encryption of SPIHT coded color images. Signal Processing, 93(9), 2422–2431.

    Article  Google Scholar 

  29. Tedmori, S., & Al-Najdawi, N. (2014). Image cryptographic algorithm based on the Haar wavelet transform. Information Sciences, 269, 21–34.

    Article  MathSciNet  MATH  Google Scholar 

  30. Riaz, F., Hameed, S., Shafi, I., Kausar, R., & Ahmed, A. (2012). Enhanced image encryption techniques using modified advanced encryption standard. In: Proceedings of 2nd international multi topic conference, IMTIC, Jamshoro, Pakistan.

  31. Singh, L. D., & Singh, K. M. (2015). Image encryption using elliptic curve cryptography. Procedia Computer Science, 54, 472–481.

    Article  Google Scholar 

  32. Sicari, S., Grieco, L., Rizzardi, A., Boggia, G., & Coen-Porisini, A. (2013). Seta: A secure sharing of tasks in clustered wireless sensor networks. In: Proceedings of IEEE WiMob, Lyon, France.

  33. Saghaiannejadesfahani, S., Luo, Y., & Cheung, S.-C. (2012). Privacy protected image denoising with secret shares. In: Proceedings of IEEE ICIP, Lake Buena Vista, FL, United States.

  34. Fidaleo, D. A., Nguyen, H., & Trivedi, M. (2004). The networked sensor tapestry (NeST): A privacy enhanced software architecture for interactive analysis of data in video-sensor networks. In: Proceedings of 2nd ACM international workshop on video surveillaince and sensor network, New York, USA.

  35. Yi, K., Han, M., & Park, J. (2011). Privacy protection and access control of image information processing devices. Journal of Internet Technology, 12(5), 711–716.

    Google Scholar 

  36. Aghdam, S . M., Khansari, M., Rabiee, H . R., & Salehi, M. (2014). WCCP: A congestion control protocol for wireless multimedia communication in sensor networks. Ad Hoc Networks 13, Part B, 516–534.

    Article  Google Scholar 

  37. Sahinoglu, W. Y., Vetro, Z., & Sahinoglu, A. (2004). Energy efficient jpeg 2000 image transmission over wireless sensor networks. In: Proceedings of IEEE GLOBECOM, Dallas, Texas, USA.

  38. Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., & Kotsopoulos, S. (2009). A hybrid scheme for video transmission over wireless multimedia sensor networks. In: Proceedings of 17th Mediterranean conference on control and automation, Thessaloniki, Grece.

  39. Sicari, S., Rizzardi, A., Grieco, L., & Coen-Porisini, A. (2015). Security, privacy and trust in internet of things: The road ahead. Computer Networks, 76, 146–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Boggia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortelli, M., Rizzardi, A., Sicari, S. et al. \(\hbox {S}^2\)DCC: secure selective dropping congestion control in hybrid wireless multimedia sensor networks. Wireless Netw 24, 309–328 (2018). https://doi.org/10.1007/s11276-016-1332-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1332-x

Keywords

Navigation