Skip to main content
Log in

Impact of antenna radiation pattern variation on the performance of SPMA at 28 GHz

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The target of this paper is to analyze the impact of variation in antenna radiation pattern on the performance of Single Path Multiple Access (SPMA) in urban/dense-urban environment. For this study, an extended 3GPP antenna model, and 3D building data from an urban area of Helsinki city is used. The simulations are performed at 28 GHz frequency using “sAGA” a MATLAB based 3D ray tracing tool. The variables considered for the series of simulations are Front to Back Ratio (FBR), Side Lobe Level (SLL), and Half Power Beamwidth (HPBW) of an antenna in horizontal and vertical plane. Network performance is compared in terms of metrics like signal strength, SINR, and capacity. This paper also presents the spectral efficiency and power efficiency analysis. The performance of SPMA was found susceptible to the change in antenna radiation pattern, and the simulation results show a significant impact of radiation pattern on the capacity gain offered by SPMA. Interestingly, SPMA was found a fairly power efficient solution with respect to the traditional macro cellular network approach. However, the level of power efficiency heavily depends upon the antenna beamwidth and on other beam parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cisco white paper, “Cisco Visual Netwokring Index: Global Mobile Data Traffic Forecast Update, 2014-2019”, February 2015.

  2. Lee, J., et al. (2012). Coordinated Multipoint Transmission and Reception in LTE-Advanced Systems. IEEE Communications Magazine, 50(11), 44–50.

    Article  Google Scholar 

  3. M.U. Sheikh, J. Lempiäinen and H. Ahnlund, “Advanced Antenna Techniques and Higher Order Sectorization with Novel Network Tessellation for Enhancing Macro Cell Capacity in DC-HSDPA Network”, International Journal of Wireless & Mobile Networks. vol. 5, no. 5, pp. 65–84.

  4. 3GPP, TS 36.300 “E-UTRA and E-UTRAN Overall Description: Stage 2” (Release 10), V11.3.0, Dec. 2012.

  5. Rappaport, T. S., Shu, S., Mayzus, R., et al. (2013). Millimetre Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  6. H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G.N. Wong, F. Gutierrez Jr. and S.T. Rappaport, “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City”, Proc. IEEE International Conference on Communications (ICC), pp. 5163-5167, Budapest, 2013.

  7. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the Art in 60 GHz Integrated Circuits & Cystems for Wireless Communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  8. Pi, Z., & Khan, F. (2011). An Introduction to Millileter-wave Mobile Broadband Systems. IEEE Communications Magazine, 49(6), 101–107.

    Article  Google Scholar 

  9. Sheikh, M. U., & Lempiäinen, J. (2014). Will New Antenna Material enable Single Path Multiple Access (SPMA)? Springer Journal on Wireless Personal Communications, 78(2), 979–994.

    Article  Google Scholar 

  10. Sheikh, M. U., Sae, J., & Lempiäinen, J. (2016). Evaluation of SPMA and Higher Order Sectorization for Homogeneous SIR through Macro Sites. Springer Journal on Wireless Networks, 22(4), 1079–1091.

    Article  Google Scholar 

  11. M.U. Sheikh, S. Naghdi, and J. Lempiäinen, SPMA: An Innovative Solution for Future Smart Networks in Macrocellular Suburban Environment, In 11th International Conference on Innovations in Information Technology (IIT), 2015, vol., no., pp.110–115, 1–3 Nov. 2015.

  12. J. Niemela, J. Lempiäinen, Impact of the Base Station Antenna Beamwidth on Capacity in WCDMA Cellular Networks, in The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring., vol. 1, no., pp.80–84 vol. 1, 22–25 April 2003.

  13. 3GPP, TR25.996, Spatial channel model for multiple input multiple output (MIMO).

  14. 3GPP, TR25.814, Physical layer aspects for evolved Universal Terrestrial Radio Access (UTRA).

  15. Gunnarsson F. et al. (2008) Downtilted base station antennas—a simulation model proposal and impact on HSPA and LTE Performance, in Proceedings IEEE VTC, Fall 2008.

  16. Cichon, D. J., & Wiesbeck, W. (1994) Ray optical wave propagation modelling in urban micro cells”, PIMRC, pp. 407–410.

  17. Schaubach, K. R., Davis, N. J., & Rappaport, T. S. (1992) A ray tracing method for predicting path loss and delay spread in microcellular environments, IEEE Vehicular Technology Conference, Denver, 1992, pp. 932–935.

  18. Gschwendtner, B. E., Wolfle, G., Burk, B., & Landstorfer, F. M. (1995) Ray tracing vs. ray launching in 3-D microcell modelling, in 1st European Personal and Mobile Communications Conference (EPMCC), Bologna, pp.74–79, Apr. 1995.

  19. Zhu, F., Lin,Q., Hu, J. (2005) A directive patch antenna with a metamaterial cover, Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, vol. 3, 3 pp., 4–7 Dec. 2005.

  20. Jun, H., Chun-seng, Y., & Qing-chun, L. (2005). A New Patch Antenna with Meta Material Cover. Journal of Zhejiang University Science A,. doi:10.1631/jzus.2006.A0089.

    Google Scholar 

  21. J. S. Gomez-Diaz, J. Perruisseau-Carrier, “Microwave to THz Properties of Graphene and Potential Antenna Applications,” International Symposium on Antennas and Propagation (ISAP), 2012, pp. 239-242, Oct. 29 2012–Nov. 2 2012.

  22. Llatser, I., Kremers,C., Chigrin, D.N., Jornet, J.M., Lemme,M.C., Cabellos-Aparicio, A., & Alarcon, E., (2012) Characterization of graphene-based nano-antennas in the terahertz band, 6th European Conference on Antennas and Propagation (EUCAP), 2012, pp. 194–198, 26–30 March 2012.

  23. Soni, S., & Bhattacharya, A. (2012). An Efficient Two-dimensional Ray-tracing Algorithm. International Journal of Electronics and Communication (AEU), 66(6), 439–447.

    Article  Google Scholar 

  24. J. M. Jornet, and I. F. Akyildiz, Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band, in Proceedings of the Fourth European Conference on Antennas and Propagation (EUCAP), Barcelona, Spain, 2010, pp. 1–5.

  25. Yong, S. K., & Chong, C. C. (2007). An overview of multigigabit wireless through millimetre wave technology: potentials and technical challenges. EURASIP Journal on Wireless Communications and Networking, 2007, 10.

    Article  Google Scholar 

  26. Kraus, J. D. & Marhefka, R. J. (2002) Antennas for all applications”, 3rd ed., 2002.

Download references

Acknowledgments

Authors would like to thank European Communications Engineering (ECE) Ltd for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.U., Lempiäinen, J. Impact of antenna radiation pattern variation on the performance of SPMA at 28 GHz. Wireless Netw 24, 361–372 (2018). https://doi.org/10.1007/s11276-016-1338-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1338-4

Keywords

Navigation