Skip to main content

Advertisement

Log in

A case for preamble compression in multi-clock-rate sampling devices for energy efficient idle listening

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The state of the art in wireless communication is highly spectrum efficient but performs poorly in terms of energy efficiency. With widespread deployment, battery operated devices, escalating energy cost, and inherent energy inefficiency of the Carrier Sense Multiple Access protocol in wireless, it is of prime importance today to look for improved energy efficiency in wireless communication. One promising solution is to use multi clock-rate sampling devices in conjunction with frequency agnostic preamble detection. This reduces the power consumed by wireless devices in idle listening, without significantly affecting the throughput and spectrum efficiency. In this paper, we model such a device as a Markov chain and determine its performance in terms of power consumption and goodput, and discuss the elemental trade-off between the two. The analytical results are verified using extensive simulation and compared with existing techniques. A preamble construction scheme that allows devices with different downclocking levels to coexist in the same network is also explored. Finally, we propose a novel preamble compression scheme based on Robust Header Compression to provide improved performance and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Agarwal, Y., Chandra, R., Wolman, A., Bahl, P., Chin, K., & Gupta, R. (2007). Wireless wakeups revisited: Energy management for VOIP over WiFi smartphones. In Proceedings of the ACM international conference on mobile systems, applications and services (pp. 179–191).

  2. Artheros Inc. (2004). Power consumption and energy efficiency of WLAN products. www.atheros.com/media/resource/resource_15_file2.

  3. Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H., Jonsson, L. E., Hakenberg, R., Koren, T., Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T., Yoshimura, T., & Zheng, H. (2001). RFC 3095: RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed. URL https://tools.ietf.org/html/rfc3095.

  4. Couvreur, A., Ny, L. M., Minaburo, A., Rubino, G., Sericola, B., & Toutain, L. (2006). Performance analysis of a header compression protocol: The ROHC unidirectional mode. Telecommunication Systems, 31(1), 85–98.

    Article  Google Scholar 

  5. Crovella, M., & Bestavros, A. (1997). Self-similarity in world wide web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking, 5(6), 835–846.

    Article  Google Scholar 

  6. Dieter, W. R., Datta, S., & Kai, W. K. (2005). Power reduction by varying sampling rate. In Proceedings of the IEEE international symposium on low power electronics and design (pp. 227–232).

  7. Dischler, J. (2015). Google Inside AdWords - Building for the next moment https://adwords.googleblog.com/2015/05/building-for-next-moment.html.

  8. Elsayed, K. (1994). On the superposition of discrete-time Markov renewal processes and application to statistical multiplexing of bursty traffic sources. Proceedings of the IEEE Global Telecommunications Conference, 2, 1113–1117.

    Google Scholar 

  9. Feeney, L., & Nilsson, M. (2001). Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies, 3, 1548–1557.

    Google Scholar 

  10. Fracchia, R., Gomez, C., & Tripodi, A. (2011). R-RoHC: A single adaptive solution for header compression. In Proceedings of the IEEE vehicular technology conference (pp. 1–5).

  11. Gold, R. (1967). Optimal binary sequences for spread spectrum multiplexing. IEEE Transactions on Information Theory, 13(4), 619–621.

    Article  MATH  Google Scholar 

  12. Gomes, J. V. P., Inácio, P. R. M., Lakic, B., Freire, M. M., Da Silva, H. J. A., & Monteiro, P. P. (2010). Source traffic analysis. ACM Transactions on Multimedia Computing, Communications, and Applications, 6(3), 21:1–21:23.

    Article  Google Scholar 

  13. IEEE Computer Society LAN-MAN Standards Committee (2007). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Strandard 802.11-2007.

  14. Karl, H. (2003). An overview of energy efficiency techniques for mobile communication systems. Tech. Rep. TKN-03-017, Telecommunication Networks Group, Technische Universität Berlin. URL http://www2.tkn.tu-berlin.de/publications/papers/TechReport_03_017.

  15. Kasami, T., Lin, S., & Peterson, W. (1968). Polynomial codes. IEEE Transactions on Information Theory, 14(6), 807–814.

    Article  MathSciNet  MATH  Google Scholar 

  16. Klemm, A., Lindemann, C., & Lohmann, M. (2001). Traffic modeling and characterization for UMTS networks. In Proceedings of the IEEE global telecommunications conference (pp. 1741–1746).

  17. Lella, A., & Lipsman, A. (2014). The U.S. mobile app report. http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report.

  18. Liu, J., & Zhong, L. (2008). Micro power management of active 802.11 interfaces. In Proceedings of the ACM international conference on mobile systems, applications and services (pp. 146–159).

  19. Lu, F., Voelker, G. M., & Snoeren, A. C. (2013). SloMo: Downclocking WiFi communication. In Proceedings of the USENIX conference on networked systems design and implementation.

  20. Manweiler, J., & Choudhury, R.R. (2011). Avoiding the rush hours: WiFi energy management via traffic isolation. In Proceedings of the ACM international conference on mobile systems, applications and services (pp. 253–266).

  21. Paxson, V., & Floyd, S. (1995). Wide area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3(3), 226–244.

    Article  Google Scholar 

  22. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the ACM international conference on embedded networked sensor systems (pp. 95–107).

  23. Ren, Q., & Liang, Q. (2005). An energy-efficient MAC protocol for wireless sensor networks. Proceedings of the IEEE Global Telecommunications Conference, 1, 1–5.

    Google Scholar 

  24. Rozner, E., Navda, V., Ramjee, R., & Rayanchu, S. (2010). NAPman: Network-assisted power management for WiFi devices. In Proceedings of the international conference on mobile systems, applications and services (pp. 91–106).

  25. Saulnier, E., & Vastola, K. (1992). A ‘HI-LO’ Markov chain model for multimedia traffic in ATM networks. In Proceedings of the IEEE global telecommunications conference (pp. 1450–1454).

  26. Shih, E., Bahl, P., & Sinclair, M. J. (2002). Wake on wireless: An event driven energy saving strategy for battery operated devices. In Proceedings of the ACM annual international conference on mobile computing and networking (pp. 160–171).

  27. Spiegel, M. R. (1992). Theory and problems of probability and statistics. New York: McGraw-Hill.

    Google Scholar 

  28. Thomson, J., & Baas, B., et al. (2002). An integrated 802.11a baseband and MAC processor. In Proceedings of the IEEE international solid-state circuits conference (pp. 92–415).

  29. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  30. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies, 3, 1567–1576.

    Google Scholar 

  31. Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.

    Article  Google Scholar 

  32. Zhang, X., & Shin, K. G. (2012). E-MiLi: Energy-minimizing idle listening in wireless networks. IEEE Transactions on Mobile Computing, 11(9), 1441–1454.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Department of Science and Technology (DST), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anik Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, A., Murthy, C.S.R. A case for preamble compression in multi-clock-rate sampling devices for energy efficient idle listening. Wireless Netw 24, 1593–1608 (2018). https://doi.org/10.1007/s11276-016-1422-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1422-9

Keywords

Navigation