Skip to main content
Log in

Design and wet-laboratory implementation of reliable end-to-end molecular communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper describes a novel design and wet laboratory implementation of reliable end-to-end molecular communication. In the reliable end-to-end molecular communication described in this paper, source and destination bio-nanomachines exchange molecular packets through intermediate bio-nanomachines that are capable of packet replication. A source bio-nanomachine forms a molecular packet and transmits the molecular packet into the environment. An intermediate bio-nanomachine detects a molecular packet and produces its copies through packet replication. A destination bio-nanomachine, upon reception of a molecular packet, produces an acknowledgment molecular packet and transmits back to the source bio-nanomachine. This paper describes how the reliable end-to-end molecular communication can be biochemically implemented with RNA (ribonucleic acid) molecules and artificial cell systems. It also describes a simulation-based performance evaluation study showing the impact of model parameters on propagation delay in the reliable end-to-end molecular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. INFO-RNA and ACK-RNA have different header lengths. An INFO-RNA is longer than an ACK-RNA.

  2. INFO-RNA and ACK-RNA described in Sect. 3 consist of approximately 2,000 and 200 nucleotides, respectively.

References

  1. Ahmadzadeh, A., Noel, A., & Schober, R. (2014). Analysis and design of two-hop diffusion-based molecular communication networks. In: IEEE global communications conference (GLOBECOM 2014) (pp. 2820–2825).

  2. Akyildiz, I. F., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.

    Article  Google Scholar 

  3. Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. Nano Communication Networks, 6(1), 3–14.

    Article  Google Scholar 

  4. Bansho, Y., Furubayashi, T., Ichihashi, N., & Yomo, T. (2016). Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proceedings of the National Academy of Sciences, 113(15), 4045–4050.

    Article  Google Scholar 

  5. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.

    Article  Google Scholar 

  6. Cobo, L. C., & Akyildiz, I. F. (2010). Bacteria-based communication in nanonetworks. Nano Communication Networks, 1(4), 244–256.

    Article  Google Scholar 

  7. Eckford, A.W., Farsad, N., Hiyama, S., & Moritani, Y. (2010). Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of the IEEE international conference on nanotechnology (pp. 854–858).

  8. Eckford, A.W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: Error analysis. In: IEEE international conference on nanotechnology (IEEE NANO 2016).

  9. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919.

  10. Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. V. (2014). TCP-like molecular communications. IEEE Journal of Selected Areas in Communication (JSAC), 32(12), 2354–2367.

    Article  Google Scholar 

  11. Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T. (2013). In vitro evolution of \(\alpha\)-hemolysin using a liposome display. Proceedings of the National Academy of Sciences, 110(42), 16796–16801.

    Article  Google Scholar 

  12. Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In: IEEE global communications conference (GLOBECOM 2015).

  13. Furubayashi, T., Nakano, T., Okaie, Y., Eckford, A., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nanobioscience, 15(3), 284–288.

    Article  Google Scholar 

  14. Hiyama, S., Inoue, T., Shima, T., Moritani, Y., Suda, T., & Sutoh, K. (2008). Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small, 4(4), 410–415.

    Article  Google Scholar 

  15. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., et al. (2005). Molecular communication. Proceedings of the NSTI Nanotechnology Conference, 3, 392–395.

    Google Scholar 

  16. Ichihashi, N., Usui, K., Kazuta, Y., Sunami, T., Matsuura, T., & Yomo, T. (2013). Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 4, 2494.

    Article  Google Scholar 

  17. Leeson, M. S., & Higgins, M. D. (2012). Forward error correction for molecular communications. Nano Communication Networks, 3(3), 161–167.

    Article  Google Scholar 

  18. Nakano, T., Eckford, A., & Haraguchi, T. (2013). Molecular communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. Nakano, T., Moore, M., Wei, F., Vasilakos, A. V., & Shuai, J. W. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on NanoBioscience, 11(2), 135–148.

    Article  Google Scholar 

  20. Nakano, T., Okaie, Y., & Vasilakos, A. V. (2013). Transmission rate control for molecular communication among biological nanomachines. IEEE Journal of Selected Areas in Communication (JSAC), 31(12), 835–846.

    Article  Google Scholar 

  21. Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In: Proceedings of the 2011 IEEE INFOCOM workshop on molecular and nanoscale communications (pp. 501–506)

  22. Nilsson, R. J. A., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., et al. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118, 3680–3683.

    Article  Google Scholar 

  23. Nkodo, A. E., Garnier, J. M., Tinland, B., Ren, H., Desruisseaux, C., McCormick, L. C., et al. (2001). Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis, 22(12), 2424–2432.

    Article  Google Scholar 

  24. Ortiz, M. E., & Endy, D. (2012). Engineered cell-cell communication via DNA messaging. Journal of Biological Engineering, 6(16), 1.

    Google Scholar 

  25. Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio’, P., & Koucheryavy, K. (2014). Forward and reverse coding for chromosome transfer in bacterial nanonetworks. Nano Communication Networks, 5(1–2), 15–24.

    Article  Google Scholar 

  26. Pierobon, M., & Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on signal processing, 59(6), 2532–2547.

    Article  MathSciNet  Google Scholar 

  27. Rayner, K. J., & Hennessy, E. J. (2013). Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research, 54, 1174–1181.

    Article  Google Scholar 

  28. Rose, C., & Mian, I.S. (2015). A fundamental framework for molecular communication channels: Timing & payload. In: 2015 IEEE internatinoal conference on communications (ICC 2015) (pp. 1043–1048)

  29. Shih, P. J., Lee, C. H., Yeh, P. C., & Chen, K. C. (2013). Channel codes for reliability enhancement in molecular communication. IEEE Journal on Selected Areas in Communications (JSAC), 31(12), 857–867.

    Article  Google Scholar 

  30. Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., et al. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19, 751–755.

    Article  Google Scholar 

  31. Srinivas, K. V., Adve, R. S., & Eckford, A. W. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.

    Article  MathSciNet  MATH  Google Scholar 

  32. Walsh, F., & Balasubramaniam, S. (2013). Reliability and delay analysis of multi-hop virus-based nanonetworks. IEEE Transactions on Nanotechnology, 12(5), 674–684.

    Article  Google Scholar 

  33. Wang, X., Higgins, M. D., & Leeson, M. S. (2014). Simulating the performance of SW-ARQ schemes within molecular communications. Simulation Modelling Practice and Theory, 42, 178–188.

    Article  Google Scholar 

  34. Wang, X., Higgins, M. D., & Leeson, M. S. (2015). Relay analysis in molecular communications with time-dependent concentration. IEEE Communications Letters, 19(11), 1977–1980.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through the Osaka University Humanware Innovation Program, a Leading Graduate School Program by the Japan Society of the Promotion of Science. This work was also supported by JSPS KAKENHI Grant Number JP25240011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nakano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furubayashi, T., Sakatani, Y., Nakano, T. et al. Design and wet-laboratory implementation of reliable end-to-end molecular communication. Wireless Netw 24, 1809–1819 (2018). https://doi.org/10.1007/s11276-016-1435-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1435-4

Keywords

Navigation