Skip to main content
Log in

Optimal power allocating for correlated data fusion in decentralized WSNs using algorithms based on swarm intelligence

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In unstructured wireless sensor networks (WSNs), which consist of a dense collection of sensor nodes deployed randomly, the communication and processing capabilities of sensor nodes can be limited owing to their small embedded batteries and available bandwidth. Power management is therefore one of the most important issues to consider in the implementation of WSNs. As a result, decentralized detection, in which the fusion center makes the final decision to use data partially processed by local nodes, is more attractive than centralized detection in unstructured WSNs. This paper proposes a more efficient and effective method for solving the power allocation problem as a constrained optimization problem: to schedule power allocation in a distributed WSN using correlated observations and amplify-and-forward local processing at sensor nodes so that the WSN detects a constant signal while maintaining a sufficient fusion error probability threshold. To accomplish this goal, this paper proposes using Deb’s method, which does not require a penalty parameter when handling the constraints of the optimization problem. Additionally, representative optimization algorithms based on swarm intelligence are used, i.e., particle swarm optimization, ant colony optimization for continuous domains (\(\hbox {ACO}_{\mathbb {R}}\)), and artificial bee colony. Through a simulation, their performance is compared for several different WSNs to determine the best algorithm for solving the power allocation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Wimalajeewa, T., & Jayaweera, S. K. (2008). Optimal power scheduling for correlated data fusion in wireless sensor networks via constrained PSO. IEEE Transactions on Wireless Communications, 7(9), 3608–3618.

    Article  Google Scholar 

  3. Yang, J.-M., Chen, Y.-P., Hong, J.-T., & Kao, C.-Y. (1997). Applying family competition to evolution strategies for constrained optimization. In International conference on evolutionary programming (pp. 201–211).

  4. Deb, K. (2000). An efficient constraint handling method for genetic algorithm. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.

    Article  MATH  Google Scholar 

  5. Kennedy, J. (2010). Particle swarm optimization. In: J. Kennedy (Ed.), Encyclopedia of machine learning (pp. 760–766). New York: Springer.

    Google Scholar 

  6. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173.

    Article  MathSciNet  MATH  Google Scholar 

  7. Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.

    Article  Google Scholar 

  8. Arpaia, P., Manna, C., Montenero, G., & D’Addio, G. (2012). In-time prognosis based on swarm intelligence for home-care monitoring: A case study on pulmonary disease. IEEE Sensors Journal, 12(3), 692–698.

    Article  Google Scholar 

  9. Haberman, B. K., & Sheppard, J. W. (2012). Overlapping particle swarms for energy-efficient routing in sensor networks. Wireless Networks, 18(4), 351–363.

    Article  Google Scholar 

  10. Kim, H., & Chang, S. (2013). High-resolution touch floor system using particle swarm optimization neural network. IEEE Sensors Journal, 13(6), 2084–2093.

    Article  Google Scholar 

  11. Jia, S., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., & Muntean, G.-M. (2014). Reliability-oriented ant colony optimization-based mobile peer-to-peer VoD solution in MANETs. Wireless Networks, 20(5), 1185–1202.

    Article  Google Scholar 

  12. Mohajerani, A., & Gharavian, D. (2015). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks. doi:10.1007/s11276-015-1061-6.

    Google Scholar 

  13. Vijayalakshmi, P., Francis, S. A. J., & Dinakaram, J. A. (2016). A robust energy efficient ant colony optimization routing algorithm for multi-hop ad hoc networks in MANETs. Wireless Networks, 22(6), 2081–2100.

    Article  Google Scholar 

  14. Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks, 18(7), 847–860.

    Article  Google Scholar 

  15. Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.

    Article  Google Scholar 

  16. Lou, C., Gao, X., Wu, F., & Chen, G. (2015). Energy-aware clustering and routing scheme in wireless sensor network. In International conference on wireless algorithms, systems, and applications (pp. 386–395).

  17. Chen, Y., Xing, Y., & Yi, W. (2016). Optimal beacon scheduling for low-duty-cycle sensor networks. In IEEE international conference on communications (pp. 1–7).

  18. Pau, G. (2016). Power consumption reduction for wireless sensor networks using a fuzzy approach. International Journal of Engineering and Technology Innovation, 6(1), 55–67.

    MathSciNet  Google Scholar 

  19. Wimalajeewa, T., & Jayaweera, S. K. (2007). PSO for constrained optimization: Optimal power scheduling for correlated data fusion in wireless sensor networks. In IEEE international symposium on personal, indoor and mobile radio communications (pp. 1–5).

  20. Krasnopeev, A., Xiao, J.-J., & Luo, Z.-Q. (2005). Minimum energy decentralized estimation in sensor network with correlated sensor noise. In IEEE international conference on acoustics, speech, and signal processing (Vol. 3, pp. 673–676).

  21. Zhang, X., Poor, H. V., & Chiang, M. (2008). Optimal power allocation for distributed detection over MIMO channels in wireless sensor networks. IEEE Transactions on Signal Processing, 56(9), 4124–4140.

    Article  MathSciNet  Google Scholar 

  22. Kuban Altínel, Í., Aras, N., Güney, E., & Ersoy, C. (2008). Binary integer programming formulation and heuristics for differentiated coverage in heterogeneous sensor networks. Computer Networks, 52(12), 2419–2431.

    Article  MATH  Google Scholar 

  23. Lin, Y., Hu, X.-M., Zhang, J., Liu, O., & Liu, H.-l. (2010). Optimal node scheduling for the lifetime maximization of two-tier wireless sensor networks. In IEEE congress on evolutionary computation (pp. 1–8).

  24. Lin, Y., Hu, X., & Zhang, J.(2010). An ant-colony-system-based activity scheduling method for the lifetime maximization of heterogeneous wireless sensor networks. In Proceedings of the 12th annual conference on genetic and evolutionary computation (pp. 23–30).

  25. Chen, J., Li, J., He, S., Sun, Y., & Chen, H.-H. (2010). Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. IEEE Communications Letters, 14(9), 833–835.

    Article  Google Scholar 

  26. Lee, J.-W., Choi, B.-S., & Lee, J.-J. (2011). Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Transactions on Industrial Informatics, 7(3), 419–427.

    Article  Google Scholar 

  27. Lee, J.-W., & Lee, J.-J. (2012). Ant-colony-based scheduling algorithm for energy-efficient coverage of WSN. IEEE Sensors Journal, 12(10), 3036–3046.

    Article  Google Scholar 

  28. Lee, J.-W., Lee, J.-Y., & Lee, J.-J. (2013). Jenga-inspired optimization algorithm for energy-efficient coverage of unstructured WSNs. IEEE Wireless Communications Letters, 2(1), 34–37.

    Article  Google Scholar 

  29. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetic-Part B, 26(1), 29–41.

    Article  Google Scholar 

  30. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  31. Box, G. E. P., & Muller, M. E. (1958). A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2), 610–611.

    Article  MATH  Google Scholar 

  32. Tereshko, V., & Loengarov, A. (2005). Collective decision making in honey-bee foraging dynamics. Computing and Information Systems, 9(3), 1–7.

    Google Scholar 

  33. Karaboga, D. (2010). Artificial bee colony algorithm-Scholarpedia. http://www.scholarpedia.org/article/Artific-ial_bee_colony_algorithm. Accessed 25 July 2016.

  34. Yücek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithm for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  35. Akhtar, F., Rehmani, M. H., & Reisslein, M. (2016). White space: Definitional perspectives and their role in exploiting spectrum opportunities. Telecommunications Policy, 40(4), 319–331.

    Article  Google Scholar 

  36. Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45, 769–784.

    Article  Google Scholar 

  37. Amjad, M., Sharif, M., Afzal, M. K., & Kim, S. W. (2016). TinyOS-new trends, comparative views, and supported sensing applications: A review. IEEE Sensors Journal, 16(9), 2865–2889.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonwoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J. Optimal power allocating for correlated data fusion in decentralized WSNs using algorithms based on swarm intelligence. Wireless Netw 23, 1655–1667 (2017). https://doi.org/10.1007/s11276-017-1454-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1454-9

Keywords

Navigation