Skip to main content

Advertisement

Log in

A resource characteristic and user QoS oriented bandwidth and power allocation algorithm for heterogeneous networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Heterogeneous networks (HetNets) composed of macrocells and small cells are expected to improve the transmission performance of users significantly. Designing efficient resource allocation schemes, specifically, bandwidth allocation and power allocation schemes for HetNets is of particular importance for it may affect user quality of service (QoS) and network performance severely. In this paper, we consider the resource allocation problem of a HetNet composed of a macrocell and a number of femtocells and propose a resource characteristic and user QoS oriented bandwidth and power allocation algorithm for the femto base stations (FBSs) which share spectrum with the macro base station. By taking into account the service requirements of the femto user equipments (FUEs) and the bandwidth resource characteristics of the network, various bandwidth resource allocation schemes are proposed. Particularly, in the case of slightly insufficient bandwidth resource, we propose a bankruptcy game based bandwidth resource allocation algorithm for the FBSs, and solve the bandwidth allocation problem by means of Shapley value method. To stress the tradeoff between data rate and power consumption, we examine the energy efficiency of the FBSs and formulate the power allocation problem as a multi-objective optimization problem with the objectives of maximizing the energy efficiency of all the FBSs. The optimal power allocation strategy can be obtained by solving the optimization problem via ideal point method and generic algorithm. Simulation results demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Damnjanovic, A., Montojo, J., & Wei, Y. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  2. Ying, L. L., Chuah, T. C., & Loo, J. (2014). Recent advances in radio resource management for heterogeneous LTE and LTE-A networks. IEEE Communications Surveys and Tutorials, 16(4), 2142–2180.

    Article  Google Scholar 

  3. Ertürk, M. C., Güven, I., & Mukherjee, S. (2013). Fair and QoS-oriented resource management in heterogeneous networks. Eurasip Journal on Wireless Communications and Networking, 2013(1), 1–14.

    Article  Google Scholar 

  4. Fang, B., & Zhou, W. (2015). Handover reduction via joint bandwidth allocation and CAC in randomly distributed HCNs. IEEE Communications Letters, 19(7), 1209–1212.

    Article  Google Scholar 

  5. Lin, Y., Bao, W., & Yu, W. (2014). Optimizing user association and spectrum allocation in HetNets: A utility perspective. IEEE Journal on Selected Areas in Communications, 33(6), 1025–1039.

    Article  Google Scholar 

  6. Wu, D., Arkhipov, D. I., Asmare, E., & Qin, Z. (2015). Ubiflow: Mobility management in urban-scale software defined IoT. In IEEE conference on computer communications, pp. 208-216.

  7. Wu, D., Bao, L., & Liu, C. H. (2013). Scalable channel allocation and access scheduling for wireless internet-of-things. IEEE Sensors Journal, 13(10), 3596–3604.

    Article  Google Scholar 

  8. Jung, H. B., & Kim, D. K. (2013). Power control of femtocells based on max-min fairness in heterogeneous networks. IEEE Communications Letters, 17(7), 1372–1375.

    Article  Google Scholar 

  9. Kwon, Y., Hwang, T., & Wang, X. (2015). Energy-efficient transmit power control for multi-tier MIMO HetNets. IEEE Journal on Selected Areas in Communications, 33(10), 2070–2086.

    Article  Google Scholar 

  10. Tai, M. H., Tran, N. H., & Do, C. T. (2015). Power control for interference management and QoS guarantee in heterogeneous networks. IEEE Communications Letters, 19(8), 1402–1405.

    Article  Google Scholar 

  11. Sun, R., Hong, M., & Luo, Z. Q. (2015). Joint downlink base station association and power control for max-min fairness: Computation and complexity. IEEE Journal on Selected Areas in Communications, 33(6), 1040–1054.

    Article  Google Scholar 

  12. Abdelnasser, A., Hossain, E., & Dong, I. K. (2014). Tier-aware resource allocation in OFDMA macrocell-small cell networks. IEEE Transactions on Communications, 63(3), 695–710.

    Article  Google Scholar 

  13. Estrada, R., Jarray, A., & Otrok, H. (2013). Energy-efficient resource allocation model for OFDMA macro-femtocell networks. IEEE Transactions on Vehicular Technology, 62(7), 3429–3437.

    Article  Google Scholar 

  14. Shen, K., & Yu, W. (2014). Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 32(6), 1100–1113.

    Article  Google Scholar 

  15. Peng, J. L., Hong, P., & Xue, K. (2015). Energy-aware cellular deployment strategy under coverage performance constraints. IEEE Transactions on Wireless Communications, 14(1), 69–80.

    Article  Google Scholar 

  16. Shakir, M. Z., Tabassum, H., & Alouini, M. S. (2014). Analytical bounds on the area spectral efficiency of uplink heterogeneous networks over generalized fading channels. IEEE Transactions on Vehicular Technology, 63(5), 2306–2318.

    Article  Google Scholar 

  17. Zhang, X., Yu, R., & Zhang, Y. (2014). Energy-efficient multimedia transmissions through base station cooperation over heterogeneous cellular networks exploiting user behavior. IEEE Wireless Communications, 21(4), 54–61.

    Article  Google Scholar 

  18. Zarakovitis, C. C., & Ni, Q. (2015). Maximising energy efficiency in multi-user multi-carrier broadband wireless systems: Convex relaxation and global optimisation techniques. IEEE Transactions on Vehicular Technology, 65(7), 5275–5286.

    Article  Google Scholar 

  19. Luo, J., Wu, D., Pan, C., & Zha, J. (2015). Optimal energy strategy for node selection and data relay in WSN-based IoT. Mobile Networks and Applications, 20(2), 169–180.

    Article  Google Scholar 

  20. Ismail, M., Gamage, A. T., & Zhuang, W. (2015). Uplink decentralized joint bandwidth and power allocation for energy-efficient operation in a heterogeneous wireless medium. IEEE Transactions on Communications, 63(4), 1483–1495.

    Article  Google Scholar 

  21. Shapley, L. S. (1953). A value for N-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Annals of mathematics studies (Vol. 28, pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

  22. Pulido, M., Soriano, J. S., & Llorca, N. (2002). Game theory techniques for university management: An extended bankruptcy model. Annals of Operations Research, 109, 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  23. Eichfelder, G. (2008). Adaptive scalarization methods in multiobjective optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  24. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–298.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ng, D. W. K., Lo, E., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.

    Article  Google Scholar 

  26. Mitchell, M. (1998). An introduction to genetic algorithms. London: MIT Press.

    MATH  Google Scholar 

  27. Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. NewYork: Wiley.

    Google Scholar 

  28. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  29. Gupta, A. K., Zhang, X., & Andrews, J. G. (2015). SINR and throughput scaling in ultradense urban cellular networks. IEEE Wireless Communications Letters, 4(6), 605–608.

    Article  Google Scholar 

  30. 3GPP. (2010). Further advancements for E-UTRA physical layer aspects, TR36.814.

  31. Estévez-Fernández, A., Fiestras-Janeiro, M. G., Mosquera, M. A., & Sánchez-Rodríguez, E. (2012). A bankruptcy approach to the core cover. Mathematical Methods of Operations Research, 76(3), 343–359.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science and Technology Specific Project of China (2016ZX03001010-004) and the 863 project (2014AA01A701), the special fund of Chongqing key laboratory (CSTC) and the project of Chongqing Municipal Education Commission (Kjzh11206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, R., Chen, Y., Chen, H. et al. A resource characteristic and user QoS oriented bandwidth and power allocation algorithm for heterogeneous networks. Wireless Netw 24, 2267–2282 (2018). https://doi.org/10.1007/s11276-017-1470-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1470-9

Keywords

Navigation