Skip to main content
Log in

Dominant factors for device-to-device occurrence probabilities in cellular networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Device-to-device (D2D) communication is expected to be part of future cellular networks. It is commonly assumed that D2D links will exist and need to be managed. However, the question with what probability D2D links will occur in a network and by which parameters this occurrence is influenced, has not been posed yet. We assume a certain event flow, consisting of (1) the occurrence of communication requirements (2) device pairing and (3) mode selection, that leads to the existence of a D2D flow. Under this event flow, we are interested in the influence of service penetration among UEs, pairing strategies and mode selection types on the occurrence probabilities of D2D communication. We propose a stochastic geometry based formula framework which captures the mean number of D2D links that occur in a certain area. This framework reveals a saturation effect of D2D flows and an interesting interplay among the device pairing and mode selection step. We show that any existing network that uses the considered action flow can be described with this framework and further, by simulation, that it can be used to correctly predict D2D occurrence probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys Tutorials, 16(4), 1801–1819. doi:10.1109/COMST.2014.2319555.

    Article  Google Scholar 

  2. Baccelli, F., Khude, N., Laroia, R., Li, J., Richardson, T., Shakkottai, S., Tavildar, S., & Wu, X. (2012). On the design of device-to-device autonomous discovery. In Communication systems and networks (COMSNETS), 2012 fourth international conference (pp. 1–9). doi:10.1109/COMSNETS.2012.6151335.

  3. Baccelli, F., & Błaszczyszyn, B. (2008). Stochastic geometry and wireless networks: Volume i theory. Foundations and Trends in Networking, 3(3–4), 249–449. doi:10.1561/1300000006.

    MATH  Google Scholar 

  4. Bulakci, O., Ren, Z., Zhou, C., Eichinger, J., Fertl, P., Gozalvez-Serrano, D., & Stanczak, S. (2015). Towards flexible network deployment in 5g: Nomadic node enhancement to heterogeneous networks. In Communication workshop (ICCW), 2015 IEEE international conference (pp. 2572–2577). doi:10.1109/ICCW.2015.7247565.

  5. Chien, C. P., Chen, Y. C., & Hsieh, H. Y. (2012). Exploiting spatial reuse gain through joint mode selection and resource allocation for underlay device-to-device communications. In Wireless personal multimedia communications (WPMC), 2012 15th international symposium. (pp. 80–84).

  6. Choi, K. W., & Han, Z. (2015). Device-to-device discovery for proximity-based service in LTE-advanced system. IEEE Journal on Selected Areas in Communications, 33(1), 55–66. doi:10.1109/JSAC.2014.2369591.

    Article  Google Scholar 

  7. da Silva, J. M. B., Maciel, T. F., Batista, R. L., e Silva, C. F. M., & Cavalcanti, F. R. P. (2014). Ue grouping and mode selection for d2d communications underlaying a multicellular wireless system. In Wireless communications and networking conference workshops (WCNCW), 2014 IEEE (pp. 230–235). doi:10.1109/WCNCW.2014.6934891.

  8. Doppler, K., Yu, C. H., Ribeiro, C. B., & Janis, P. (2010). Mode selection for device-to-device communication underlaying an LTE-advanced network. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). doi:10.1109/WCNC.2010.5506248.

  9. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49. doi:10.1109/MCOM.2009.5350367.

    Article  Google Scholar 

  10. Feasibility study for proximity services (prose). TR 22.803 V12.2.0, 3GPP Technical Specification Group Services and System Aspects (2013). http://www.3gpp.org/DynaReport/22803.htm.

  11. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177. doi:10.1109/MCOM.2012.6163598.

    Article  Google Scholar 

  12. Golrezaei, N., Dimakis, A., & Molisch, A. (2012). Device-to-device collaboration through distributed storage. In GLOBECOM Proceedings (pp. 2397–2402). doi:10.1109/GLOCOM.2012.6503475.

  13. Hakola, S., Chen, T., Lehtomaki, J., & Koskela, T. (2010). Device-to-device (d2d) communication in cellular network—performance analysis of optimum and practical communication mode selection. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). doi:10.1109/WCNC.2010.5506133.

  14. Han, T., Yin, R., Xu, Y., & Yu, G. (2012). Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks. In PIMRC Proceedings (pp. 559–564). doi:10.1109/PIMRC.2012.6362848.

  15. Hu, L. (2014). Resource allocation for network-assisted device-to-device discovery. In Wireless communications, vehicular technology, information theory and aerospace electronic systems (VITAE), 2014 4th international conference (pp. 1–5). doi:10.1109/VITAE.2014.6934508.

  16. Jiang, J., Zhang, S., Li, B., & Li, B. (2016). Maximized cellular traffic offloading via device-to-device content sharing. IEEE Journal on Selected Areas in Communications, 34(1), 82–91. doi:10.1109/JSAC.2015.2452493.

    Article  Google Scholar 

  17. Jung, M., Hwang, K., & Choi, S. (2012). Joint mode selection and power allocation scheme for power-efficient device-to-device (d2d) communication. In Vehicular technology conference (VTC Spring), 2012 IEEE 75th (pp. 1–5). doi:10.1109/VETECS.2012.6240196.

  18. Kang, H. J., & Kang, C. G. (2014). Mobile device-to-device (d2d) content delivery networking: A design and optimization framework. Journal of Communications and Networks, 16(5), 568–577. doi:10.1109/JCN.2014.000095.

    Article  Google Scholar 

  19. Klugel, M., & Kellerer, W. (2014). Introduction of an efficiency metric for device-to-device communication in cellular networks. In VTC Fall 2014 (pp. 1–6). doi:10.1109/VTCFall.2014.6966021.

  20. Klugel, M., & Kellerer, W. (2016). Leveraging the d2d-gain: Resource efficiency based mode selection for device-to-device communication. In Accepted for publication on Globecom 2016.

  21. Koskela, T., Hakola, S., Chen, T., Lehtomaki, J. (2010). Clustering concept using device-to-device communication in cellular system. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). doi:10.1109/WCNC.2010.5506183.

  22. Mach, P., Becvar, Z., & Vanek, T. (2015). In-band device-to-device communication in ofdma cellular networks: A survey and challenges. IEEE Communications Surveys Tutorials, 17(4), 1885–1922. doi:10.1109/COMST.2015.2447036.

    Article  Google Scholar 

  23. Thanos, A., Shalmashi, S., & Miao, G. (2013). Network-assisted discovery for device-to-device communications. In Globecom Workshops (GC Wkshps), 2013 IEEE (pp. 660–664). doi:10.1109/GLOCOMW.2013.6825063.

  24. Varga, A. (2001). The omnet++ discrete event simulation system. In In ESM.

  25. Virdis, A., Stea, G., & Nardini, G. (2014). Simulte: A modular system-level simulator for LTE/LTE—a networks based on omnet++. In Proceedings of SimulTech (pp. 28–30).

  26. Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2015). Quality-optimized joint source selection and power control for wireless multimedia d2d communication using stackelberg game. IEEE Transactions on Vehicular Technology, 64(8), 3755–3769. doi:10.1109/TVT.2014.2355594.

    Article  Google Scholar 

  27. Wen, S., Zhu, X., Zhang, X., & Yang, D. (2013). Qos-aware mode selection and resource allocation scheme for device-to-device (d2d) communication in cellular networks. In Communications workshops (ICC), 2013 IEEE international conference (pp. 101–105). doi:10.1109/ICCW.2013.6649209.

  28. Yang, Z. J., Huang, J. C., Chou, C. T., Hsieh, H. Y., Hsu, C. W., Yeh, P. C., & Hsu, C. C. A. (2013). Peer discovery for device-to-device (d2d) communication in LTE-a networks. In Globecom workshops (GC Wkshps), 2013 IEEE (pp. 665–670). doi:10.1109/GLOCOMW.2013.6825064.

  29. Zhang, H., Li, Y., Jin, D., Hassan, M. M., AlElaiwi, A., & Chen, S. (2015). Buffer-aided device-to-device communication: Opportunities and challenges. IEEE Communications Magazine, 53(12), 67–74. doi:10.1109/MCOM.2015.7355587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Klügel.

Additional information

This work has been funded by the German Research Foundation (DFG) under Grant Number KE 1863/2-1 as part of the SPP COIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klügel, M., Kellerer, W. Dominant factors for device-to-device occurrence probabilities in cellular networks. Wireless Netw 24, 2749–2761 (2018). https://doi.org/10.1007/s11276-017-1503-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1503-4

Keywords

Navigation