Skip to main content
Log in

Convergecast scheduling and cost optimization for industrial wireless sensor networks with multiple radio interfaces

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Industrial wireless sensor networks have been widely deployed in many industrial systems. The main communication paradigm of such systems, known as convergecast, is to converge sensing data to a centralized manager. The rapid and reliable data convergecast is essential to the industrial production. Multiple radio interfaces on a network device and convergecast scheduling algorithms can effectively reduce convergecast delay. Existing works confine to the convergecast based on linear- and tree-based routing. Compared to the two routing schemes, graph routing is more reliable. Although the graph routing gains more popularity in industrial networks due to its better reliability, few works have addressed its temporality performance. On the other hand, the number of radio interfaces also impacts on the convergecast delay. In this paper, we present a holistic framework to solve how to use multiple radio interfaces to converge data. First, we propose a convergecast scheduling algorithm for industrial wireless sensor networks with multiple radio interfaces. Second, based on our proposed scheduling algorithm, we propose an optimal algorithm and a fast heuristic algorithm to minimize the number of radio interfaces under the temporality constraint of industrial production. Evaluations show that all our algorithms perform closely to the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soldati, P., Zhang, H., & Johansson, M. (2009). Deadline-constrained transmission scheduling and data evacuation in wirelesshart networks. In European control conference.

  2. Lin, Z., Du, C., Meng, D., Yang, Z., & Wang, X. (2016). Rang-based distributed recruit scheduling in WSNs. Information and Control, 45(6), 684–690.

    Google Scholar 

  3. Jin, X., Xia, C., Xu, H., Wang, J., & Zeng, P. (2016). Mixed criticality scheduling for industrial wireless sensor networks. Sensors, 2016(16), 1–20.

    Google Scholar 

  4. Zhu, X., Huang, P.-C., Meng, J., Han, S., Mok, A. K., Chen, D., et al. (2014). Colloc: A collaborative location and tracking system on wirelesshart. ACM Transactions on Embedded Computing Systems, 13(4), 125–148.

    Google Scholar 

  5. Sleep, S. R., Dadej, A., & Lee, I. (2016). Representing arbitrary sensor observations for target tracking in wireless sensor networks. Computers & Electrical Engineering.

  6. Bagaa, M., Challal, Y., Ksentini, A., Derhab, A., & Badache, N. (2014). Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges. IEEE Communications Surveys & Tutorials, 16(3), 1339–1368.

    Article  Google Scholar 

  7. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. IEEE Wireless Communications, 14(2), 70–87.

    Article  Google Scholar 

  8. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). Cdc: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  9. Soua, R., Minet, P., & Livolant, E. (2012). Modesa: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks. In International performance computing and communications conference (pp. 91–100).

  10. Soua, R., Livolant, E., & Minet, P. (2013). An adaptive strategy for an optimized collision-free slot assignment in multichannel wireless sensor networks. Journal of sensor and actuator networks, 2(3), 449–485.

    Article  Google Scholar 

  11. Soua, R., Minet, P., & Livolant, E. (2014). A distributed joint channel and slot assignment for convergecast in wireless sensor networks. In International conference on new technologies, mobility and security (pp. 1–5).

  12. Xu, X., Liang, W., & Xu, Z. (2013). Minimizing remote monitoring cost of wireless sensor networks. In Wireless communications and networking conference (pp. 1476–1481), IEEE.

  13. Ji, S., Cai, Z., Li, Y., & Jia, X. (2012). Continuous data collection capacity of dual-radio multichannel wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1844–1855.

    Article  Google Scholar 

  14. Lu, T., Liu, G., & Chang, S. (2016). Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network. Wireless Networks, 1–15, doi:10.1007/s11276-016-1360-6.

    Article  Google Scholar 

  15. Wadhwa, L. K., Deshpande, R. S., & Priye, V. (2016). Extened shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37(2), 295–300.

    Article  Google Scholar 

  16. Dang, K., Shen, J.-Z., Dong, L.-D., & Xia, Y.-X. (2013). A graph route-based superframe scheduling scheme in wirelesshart mesh networks for high robustness. Wireless personal communications, 71(4), 2431–2444.

    Article  Google Scholar 

  17. IEC. (2009). IEC 62591: Industrial communication networks–wireless communication network and communication profiles–wirelesshart.

  18. Liang, W., Zhang, X., Xiao, Y., Wang, F., Zeng, P., & Yu, H. (2011). Survey and experiments of WIA-PA specification of industrial wireless network. Wireless Communications and Mobile Computing, 11(8), 1197–1212.

    Article  Google Scholar 

  19. Lin, T.-Y., Hsieh, K.-C., & Huang, H.-C. (2012). Applying genetic algorithms for multiradio wireless mesh network planning. IEEE Transactions on Vehicular Technology, 61(5), 2256–2270.

    Article  Google Scholar 

  20. Chieochan, S., & Hossain, E. (2013). Channel assignment for throughput optimization in multichannel multiradio wireless mesh networks using network coding. IEEE Transactions on Mobile Computing, 12(1), 118–135.

    Article  Google Scholar 

  21. Xie, K., Wang, X., Liu, X., Wen, J., & Cao, J. (2015). Interference-aware cooperative communication in multi-radio multi-channel wireless networks. IEEE Transactions on Computers, 65, 1–14.

    MathSciNet  MATH  Google Scholar 

  22. Lin, T.-Y., Wu, K.-R., & Yin, G.-C. (2015). Channel-hopping scheme and channel-diverse routing in static multi-radio multi-hop wireless networks. IEEE Transactions on Computers, 64(1), 71–86.

    Article  MathSciNet  Google Scholar 

  23. Ji, S., Li, Y., & Jia, X. (2011). Capacity of dual-radio multi-channel wireless sensor networks for continuous data collection. In International Conference on Computer and Communications, IEEE, (pp. 1062–1070).

  24. Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  25. Al Islam, A. A., Hossain, M. S., Raghunathan, V., & Hu, Y. C. (2014). Backpacking: Energy-efficient deployment of heterogeneous radios in multi-radio high-data-rate wireless sensor networks. IEEE Access, 2, 1281–1306.

    Article  Google Scholar 

  26. Stathopoulos, T., Lukac, M., Mclntire, D., Heidemann, J., Estrin, D., & Kaiser, W. J. (2007). End-to-end routing for dual-radio sensor networks. In International conference on computer communications (pp. 2252–2260). IEEE.

  27. Choi, H., Wang, J., & Hughes, E. A. (2009). Scheduling for information gathering on sensor network. Wireless Networks, 15(1), 127–140.

    Article  Google Scholar 

  28. Gandham, S., Zhang, Y., & Huang, Q. (2008). Distributed time-optimal scheduling for convergecast in wireless sensor networks. Computer Networks, 52(3), 610–629.

    Article  Google Scholar 

  29. Incel, Ö. D., Ghosh, A., Krishnamachari, B., & Chintalapudi, K. (2012). Fast data collection in tree-based wireless sensor networks. IEEE Transactions on Mobile Computing, 11(1), 86–99.

    Article  Google Scholar 

  30. Kim, Y. G., Wang, Y., Park, B., & Choi, H. H. (2016). A heuristic resource scheduling scheme in time-constrained networks. Computers & Electrical Engineering, 54, 1–15.

    Article  Google Scholar 

  31. Zhang, H., Soldati, P., & Johansson, M. (2009). Optimal link scheduling and channel assignment for convergecast in linear wirelesshart networks. In International symposium on modeling and optimization in mobile, ad hoc, and wireless networks (pp. 1–8).

  32. Zhang, H., Osterlind, F., Soldati, P., Voigt, T., & Johansson, M. (2010). Rapid convergecast on commodity hardware: Performance limits and optimal policies. In IEEE Communications society conference on sensor mesh and Ad Hoc communications and networks (pp. 1–9).

  33. Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2010). Real-time scheduling for wirelesshart networks. In Real-time systems symposium (pp. 150–159).

  34. Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2011). Priority assignment for real-time flows in wirelesshart networks. In Euromicro conference on real-time systems (pp. 35–44).

  35. Cao, B., Ge, Y., Kim, C., Feng, G., Tan, H., & Li, Y. (2013). An experimental study for inter-user interference mitigation in wireless body sensor networks. IEEE Sensors Journal, 13(10), 3585–3595.

    Article  Google Scholar 

  36. Cao, B., Feng, G., Li, Y., & Wang, C. (2014). Cooperative media access control with optimal relay selection in error-prone wireless networks. IEEE Transactions on Vehicular Technology, 63(1), 252–265.

    Article  Google Scholar 

  37. Cao, B., Li, Y., Wang, C., & Feng, G. (2015). Dynamic cooperative media access control for wireless networks. Wireless Communications and Mobile Computing, 15(13), 1759–1772.

    Article  Google Scholar 

  38. Liu, N., Plets, D., Vanhecke, K., Martens, L., & Joseph, W. (2015). Wireless indoor network planning for advanced exposure and installation cost minimization. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–14.

    Article  Google Scholar 

  39. Xia, C., Liu, W., & Deng, Q. (2015). Cost minimization of wireless sensor networks with unlimited-lifetime energy for monitoring oil pipelines. IEEE/CAA Journal of Automatica Sinica, 2(3), 290–295.

    Article  MathSciNet  Google Scholar 

  40. Zhang, J., Jia, X., Zheng, Z., & Zhou, Y. (2011). Minimizing cost of placement of multi-radio and multi-power-level access points with rate adaptation in indoor environment. IEEE Transactions on Wireless Communications, 10(7), 2186–2195.

    Article  Google Scholar 

  41. Jin, X., Kong, F., Kong, L., Liu, W., & Zeng, P. (2017). Reliability and temporality optimization for multiple coexisting WirelessHART networks in industrial environments. IEEE Transactions on Industrial Electronics,. doi:10.1109/TIE.2017.2682005.

    Article  Google Scholar 

  42. IEEE Computer Society (2012). IEEE std. 802.15.4e, Part. 15.4: Low-rate wireless personal area networks (LR-WPANs) Amendament 1: MAC subplayer.

  43. Song, J., Han, S., Mok, A. K., Chen, D., Lucas, M., & Nixon, M. (2008). Wirelesshart: Applying wireless technology in real-time industrial process control. In Real-Time and embedded technology and applications symposium (pp. 377–386).

  44. Liu, J. W. S. (2000). Real-Time Systems. New Jersey: Prentice Hall.

    Google Scholar 

  45. Camilo, T., Silva, J. S., Rodrigues, A., & Boavida, F. (2007). Gensen: A topology generator for real wireless sensor networks deployment. In Software technologies for embedded and ubiquitous systems (pp. 436–445).

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61502474, 61501447 and 61233007) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zeng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Xu, H., Xia, C. et al. Convergecast scheduling and cost optimization for industrial wireless sensor networks with multiple radio interfaces. Wireless Netw 24, 3205–3219 (2018). https://doi.org/10.1007/s11276-017-1530-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1530-1

Keywords

Navigation