Skip to main content
Log in

Terahertz wireless data communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In recent years Terahertz (THz) Band communications have gained even greater interest and higher expectations to meet an ever increasing demand for the speed of wireless communications. This paper provides the characteristics of electromagnetic waves propagating in the THz Band, which is one of the key technology to satisfy the increasing demand for Terahertz Wireless Data Communication (ThWDC). The performance of future terabit super channels implemented using bipolar phase-shift-keying which gives the best BER (Bit Error Rate) with today’s technology is investigated through the simulations for ThWDC. The objective of this paper is to describe the important issues related to the transmission in of ThWDC in air environment and to determine the best transmission windows in the THz range. In particular, ThWDC channel is modeled considering effects like capacity, channel performance and BER is investigated through simulation. The simulation results and the theoretical analysis show that data communication is possible from 0.01 to 0.5 THz frequency range and the best transmission window in this range have been found ω1 = [0.01–0.05 THz], ω2 = [0.06–0.16 THz] and ω3 = [0.2–0.3 THz] in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, T. H. (2003). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  2. Christie, Y. (2004). Edholm’s law of bandwidth. IEEE Spectrum, 41, 58–60.

    Google Scholar 

  3. Nagatsuma, T. (2015). Photonics-enabled terahertz communications towards terabit/s. In Microwave photonics (MWP), 2015 international topical meeting on. IEEE, 2015.

  4. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: next frontier for wireless communicationsPhysical. Communication, 12, 16–32.

    Google Scholar 

  5. Index, Cisco Visual Networking. (2014). Forecast and methodology, 20122017 (2013). URL: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf.

  6. Schneider, Thomas. (2015). Ultrahigh-bitrate wireless data communications via THz-links; possibilities and challenges. Journal of Infrared, Millimeter, and Terahertz Waves, 36(2), 159–179.

    Article  Google Scholar 

  7. Piesiewicz, R., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. Antennas and Propagation Magazine, IEEE, 49(6), 24–39.

    Article  Google Scholar 

  8. Song, H.-J., & Nagatsuma, T. (2011). Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263.

    Article  Google Scholar 

  9. Badoi, C.-I., et al. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.

    Article  Google Scholar 

  10. Akyildiz, I. F., et al. (2014). LTE-advanced and the evolution to Beyond 4G (B4G) systems. Physical Communication, 10, 31–60.

    Article  Google Scholar 

  11. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). ‘State of the art in 60-GHz integrated circuits and systems for wireless communications’. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  12. Vaughan-Nichols, S. J. (2010). ‘Gigabit Wi-Fi is on its way’. IEEE Computer, 43(11), 11–14.

    Article  Google Scholar 

  13. Baykas, T., et al. (2011). IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s. Communications Magazine, IEEE, 49(7), 114–121.

    Article  Google Scholar 

  14. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  15. Wu, K., Xiao, J., & Ni, L. M. (2012). Rethinking the architecture design of data center networks. Frontiers Computer Science, 6(5), 596–603.

    MathSciNet  Google Scholar 

  16. Katayama, Y., Takano, K., Kohda, Y., Ohba, N., & Nakano, D. (2011) Wireless data center networking with steered-beam mm-wave links. In IEEE wireless communications and networking conference, WCNC, 2011 (pp. 2179–2184).

  17. Laskar, J., et al. (2007). The next wireless wave is a millimeter wave. Microwave Journal, 50(8), 22.

    Google Scholar 

  18. Llatser, I., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333.

    Google Scholar 

  19. Schneider, T., et al. (2012). Link budget analysis for terahertz fixed wireless links. IEEE Transactions on Terahertz Science and Technology, 2(2), 250–256.

    Article  Google Scholar 

  20. Yang, Y., Mahboubeh, M., & Grischkowsky, D. (2015). THz-TDS characterization of the digital communication channels of the atmosphere and the enabled applications. Journal of Infrared, Millimeter, and Terahertz Waves, 36(2), 97–129.

    Article  Google Scholar 

  21. Carena, A., et al. (2010). Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM. IEEE Photonics Technology Letters, 22(11), 829–831.

    Article  Google Scholar 

  22. Yu, J., et al. (2012). 7-Tb/s signal transmission Over 320 km using PDM-64QAM modulation. IEEE Photonics Technology Letters, 24(4), 264–266.

    Article  Google Scholar 

  23. Bosco, G., et al. (2011). On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. Journal of Lightwave Technology, 29(1), 53–61.

    Article  Google Scholar 

  24. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Article  Google Scholar 

  25. Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: Prentice Hall PTR.

    MATH  Google Scholar 

  26. Couch, I. I., & Leon, W. (1994). Modern communication systems: Principles and applications. Upper Saddle River: Prentice Hall PTR.

    MATH  Google Scholar 

  27. Goody, R. M., & Yung, Y. L. (1989). Atmospheric radiation: theoretical basis. In R. M. Goody & Y. L. Yung (Eds.), Atmospheric radiation: theoretical basis (2nd ed., p. 1). New York: Oxford University Press.

    Google Scholar 

  28. Rothman, L. S., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, 110(9), 533–572.

    Article  Google Scholar 

  29. The beer-lambert law. (1962). Journal of Chemical Education, 39(7), 333.

    Article  Google Scholar 

  30. Gueymard, C. A. (2008). REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation–Validation with a benchmark dataset. Solar Energy, 82(3), 272–285.

    Article  Google Scholar 

  31. Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.

    Article  Google Scholar 

  32. Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Physical Communication, 2(3), 167–183.

    Article  Google Scholar 

  33. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  34. Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254.

    Article  Google Scholar 

  35. Akkaş, M. A., & Sokullu, R. (2015). Channel modeling and analysis for wireless underground sensor networks in water medium using electromagnetic waves in the 300–700 MHz range. Wireless Personal Communications, 84(2), 1449–1468.

    Article  Google Scholar 

  36. Li, L., Vuran, M. C., & Akyildiz, I. F. (2007). Characteristics of underground channel for wireless underground sensor networks. In Proceedings Med-Hoc-Net’07.

  37. http://hitran.iao.ru/gasmixture/mixmol.

  38. Kukutsu, N., & Kado, Y. (2009). Overview of millimeter and terahertz wave application research. NTT Technical Review, 7(3), 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Alper Akkaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaş, M.A. Terahertz wireless data communication. Wireless Netw 25, 145–155 (2019). https://doi.org/10.1007/s11276-017-1548-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1548-4

Keywords

Navigation