Skip to main content
Log in

An accurate analysis of the nonlinear power amplifier effects on SC-FDMA signals

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Single carrier-frequency division multiple access (SC-FDMA) is a multiple access technique in broadband wireless networks which has been adapted by 3GPP for uplink transmission in 4G mobile communications. In this paper, the nonlinear effect of practical power amplifier (PA) is studied on the power allocated SC-FDMA signals. The interference power on the estimated symbols of all users are derived by two approaches based on the polynomial model of nonlinear PA and allocated power of subcarriers. In the first approach, an accurate analysis is followed.An approximation of the accurate result is presented in the second approach to provide a closed form formula. A simulation study is conducted to verify the analytical outcomes. The simulation and the exact analytical results are significantly matched. Conversely, the approximate relations are extremely suitable for allocating power in system design due to their closed form nature where they provide acceptable accuracy for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coon, J., Armour, S., Beach, M., & McGeehan, J. (2005). Adaptive frequency domain equalization for single-carrier multiple-input multiple-output wireless transmissions. IEEE Transactions on Signal Processing, 53, 3247–3256.

    Article  MathSciNet  MATH  Google Scholar 

  2. Lee, T., & Ochiai, H. (2017). A new trellis shaping design for peak power reduction of SC-FDMA signals with high-order QAM. IEEE Transactions on Vehicular Technology, 66, 5030–5042.

    Article  Google Scholar 

  3. Kamal, S., Meza, C. A. A., Tran, N. H., & Lee, K. (2017). Low-PAPR hybrid filter for SC-FDMA. IEEE Communication Letters, 21, 905–908.

    Article  Google Scholar 

  4. Sinanovi, D., Šišul, G., & Modlic, B. (2017). Low-PAPR spatial modulation for SC-FDMA. IEEE Transactions on Vehicular Technology, 66, 443–454.

    Google Scholar 

  5. Myung, H. G., Lim, J., & Goodman, D. J. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1, 30–38.

    Article  Google Scholar 

  6. Frank, T., Klein, A., Costa, E., & Schulz, E. (2005). Robustness of IFDMA as air interface candidate for future high rate mobile radio systems. Advances in Radio Science, 3, 265–270.

    Article  Google Scholar 

  7. Sanchez-Sanchez, J. J., Fernandez-Plazaola, U., Aguayo-Torres, M. C., & Entrambasaguas, J. (2009). Closed-form BER expression for interleaved SC-FDMA with M-QAM. In IEEE 70th vehicular technology conference (VTC).

  8. Sanchez-Sanchez, J. J., Aguayo-Torres, M. C., & Fernandez-Plazaola, U. (2011). BER analysis for zero-forcing SC-FDMA over Nakagamim fading channels. IEEE Transactions on Vehicular Technology, 60, 4077–4081.

    Article  Google Scholar 

  9. Gomaa, A., & Al-Dhahir, N. (2014). Phase noise in asynchronous SCFDMA systems: performance analysis and data-aided compensation. IEEE Transactions on Vehicular Technology, 63, 2642–2652.

    Article  Google Scholar 

  10. Sridharan, G., & Lim, T. J. (2012). Performance analysis of SC-FDMA in the presence of receiver phase noise. IEEE Transactions on Communications, 60, 3876–3885.

    Article  Google Scholar 

  11. Iqbal, N., & Zerguine, A. (2017). AFD-DFE using constraint-based RLS and phase noise compensation for uplink SC-FDMA. IEEE Transactions on Vehicular Technology, 66, 4435–4443.

    Google Scholar 

  12. Shamaei, K., & Sabbaghian, M. (2015). Analytical performance evaluation of SC-FDMA systems in the presence of frequency and time offset. IEEE Transactions on Wireless Communications, 14, 6230–6239.

    Article  Google Scholar 

  13. Kiayani, A., Anttila, L., Zou, Y., & Valkama, M. (2016). Channel estimation and equalization in multiuser uplink OFDMA and SC-FDMA system usnder transmitter RF impairments. IEEE Transactions on Vehicular Technology, 65, 82–99.

    Article  Google Scholar 

  14. Kumar, A., Dwivedi, S., & Jagannatham, A. K. (2016). GLRT-Based spectrum sensing for MIMO SC-FDMA cognitive radio systems in the presence of synchronization impairments. IEEE Wireless Communication Letters, 5, 280–283.

    Article  Google Scholar 

  15. Ciochina, C., Mottier, D., & Sari, H. (2008). An analysis of three multiple access techniques for the uplink of future cellular mobile systems. European Transactions on Telecommunications, 19, 581–588.

    Article  Google Scholar 

  16. Mohammadi, A., & Ghannouchi, F. M. (2012). RF transceiver design for MIMO wireless communications. Berlin: Springer.

    Book  Google Scholar 

  17. Majidi, M., Mohammadi, A., & Abdipour, A. (2013). Accurate analysis of spectral regrowth of nonlinear power amplifier driven by cyclostationary modulated signals. Journal on Analog Integrated Circuits and Signal Processing, 74, 425–437.

    Article  Google Scholar 

  18. Cottais, E., Wang, Y., & Toutain, S. (2008). Spectral regrowth analysis at the output of a memoryless power amplifier with multicarrier signals. IEEE Transactions on Communications, 56, 1111–1118.

    Article  Google Scholar 

  19. Banelli, P. (2003). Theoretical analysis and performance of OFDM signals in nonlinear fading channels. IEEE Transactions on Wireless Communications, 2, 284–293.

    Article  Google Scholar 

  20. Schreurs, D., Odroma, M., Goacher, A. A., & Gadringer, M. (2009). RF power amplifier behavioral modeling. New York: Cambridge University Press.

    Google Scholar 

  21. Baghani, M., Mohammadi, A., Majidi, M., & Valkama, M. (2014). Analysis and rate optimization of OFDM-based cognitive radio networks under power amplifier nonlinearity. IEEE Transactions on Communications, 62, 3410–3419.

    Article  Google Scholar 

  22. Majidi, M., Mohammadi, A., & Abdipour, A. (2014). Analysis of the power amplifier nonlinearity on the power allocation in cognitive radio networks. IEEE Transactions on Communications, 62, 467–477.

    Article  Google Scholar 

  23. Baghani, M., Mohammadi, A., Majidi, M., & Valkama, M. (2017). Uplink resource allocation in multiuser multicarrier cognitive radio networks under power amplifier nonlinearity. Transaction on Emerging Telecommunications Technologies. doi:10.1002/ett.3162.

    Google Scholar 

  24. Bohara, V. A. & Ting, S. H. (2008). Analysis of OFDM signals in nonlinear high power amplifier with memory. In IEEE international conference on communication (ICC).

  25. Gard, K. G., Gutierrez, H. M., & Steer, M. B. (1999). Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex Gaussian process. IEEE Transactions on Microwave Theory and Techniques, 47, 1059–1069.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Baghani.

Appendices

Appendix 1: Deriving \(\sigma _{{{k}},{{n}_{1}},{{n}_{2}},r'}^{k',r}\)

For accurate calculation, it is necessary to sperate the summation on \(q_1\) and \(O_1\) in (16) when these parameters are equal to k. For this, according to (16), the \(F_1\), \(F_2\) and \(F_3\) functions are defined as

$$\begin{aligned}&\sigma _{{{k}},{{n}_{1}},{{n}_{2}},r'}^{k',r}\nonumber \\ {}&= \frac{1}{{{(UN)}^{4}}{{N}^{2}}}\sqrt{{{p}_{{{n}_{1}}-Nr'}}} \sqrt{{{p}_{{{n}_{2}}-Nr'}}}\sum \limits _{s'=0}^{N-1} {\sum \limits _{s=0}^{N-1}{\frac{1}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \nonumber \\&E\left[ |{{a}_{k}}{{|}^{2}}\left( \sum \limits _{{{q}_{1}}=0}^{N-1}{|{{a}_{{{q}_{1}}}} {{|}^{2}}{{F}_{1}}\left( {{q}_{1}},{{n}_{1}}-Nr',s\right) } \right. \right. \nonumber \\&\sum \limits _{{{O}_{1}}=0}^{N-1}{|{{a}_{{{O}_{1}}}}{{|}^{2}} {{F}_{2}}\left( {{O}_{1}},{{n}_{2}}-Nr',s'\right) }+ \sum \limits _{{{q}_{1}}=0}^{N-1} {\sum \limits _{{{O}_{1}}=0}^{N-1}} \nonumber \\&\left. {|{{a}_{{{q}_{1}}}}{{|}^{2}}|{{a}_{{{O}_{1}}}}{{|}^{2}}{{F}_{3}} \left( {{q}_{1}},{{O}_{1}},{n}_{1}{-}Nr',{n}_{2}{-}Nr',s,s'\right) }\right) \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-k({{n}_{1}}-Nr')-sk'+k({{n}_{2}}-Nr')-s'k')}}\right] \end{aligned}$$
(22)

where \(p_{i,j}=0\) for \(i<0\) and \(i>N-1\) and

$$\begin{aligned}&{{F}_{1}}({{q}_{1}},{{n}_{1}}-Nr',s)\nonumber \\&=\sum \limits _{s1=r'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}} \sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}{{q}_{1}} (s-{{n}_{1}})}}}\nonumber \\&{{F}_{2}}\left( {{O}_{1}},{{n}_{2}}-Nr',s'\right) =\nonumber \\&\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}} \sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}{{O}_{1}} ({{n}_{2}}-s')}}}\nonumber \\&{{F}_{3}}\left( {{q}_{1}},{{O}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s'\right) =\sum \limits _{{{s}_{1}}=r'N}^{{r}'N+N-1}{{}} \nonumber \\&\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}} \sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}} \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}{{q}_{1}}({{s}_{1}}-{{l}_{1}}+{{n}_{2}}-s'-r'N)}}\nonumber \\&{{e}^{\frac{j2\pi }{N}{{O}_{1}}(s1+{{n}_{1}}-s-{{l}_{1}}-r'N)}} \end{aligned}$$
(23)

The final value of \(\sigma _{{{k}},{{n}_{1}},{{n}_{2}},r'}^{k',r}\) by considering different cases in which \(q_1\) and \(O_1\) are equal to k or one of them is equal to k, are represented in (17).

Appendix 2: Deriving \(C_{{{k}_{1}},{{k}_{2}},{{n}_{1}},{{n}_{2}},r'}^{k',r}\)

In this subsection, \(C_{{{k}_{1}},{{k}_{2}},{{n}_{1}},{{n}_{2}},r'}^{k',r}\) is calculated according to (19). Thus, each case in which Eq. (19) is not zero, is studied individually which is denoted by \(A_i,i=1,\ldots ,4\).

In the first case \((q_2=k_1,q_1=k_2,O_1=O_2)\), for considering the exact value of \(\gamma _4\), new functions \(F_4\) and \(F_5\) are defined as

$$\begin{aligned}&{{A}_{1}}=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}} \sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}} E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}}{\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}} |a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}\right. \nonumber \\&\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}} \sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}}{{e}^{-\frac{j2\pi }{N}({{k}_{2}} {{s}_{1}}{-}{{k}_{1}}({{s}_{1}}{+}{{n}_{1}}{-}s))}} \nonumber \\&\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{O}_{1}}=0}^{N-1} {\sqrt{{p_{{{l}_{1}}-r'N,r'}}}\sqrt{{p_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}}} |{{a}_{{{O}_{1}}}}{{|}^{2}}\nonumber \\&\left. {{e}^{-\frac{j2\pi }{N}{{O}_{1}}\left( {{n}_{2}}-s'\right) }}{{e}^ {\frac{j2\pi }{N}\left( -{{k}_{1}}\left( {{n}_{1}}-Nr'\right) -sk'+{{k}_{2}} \left( {{n}_{2}}-Nr'\right) -s'k'\right) }}\right] \nonumber \\&=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}} {{N}^{2}}}E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1} {\frac{|{{a}_{{{k}_{1}}}} {{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \right. \nonumber \\&|{{a}_{{{O}_{1}}}}{{|}^{2}}{{F}_{4}}({{k}_{1}},{{k}_{2}},{{n}_{1}},s){{F}_{5}} \left( {{O}_{1}},{{n}_{2}},s'\right) \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}\left( -{{k}_{1}}({{n}_{1}}-Nr'\right) -sk'+{{k}_{2}} \left( {{n}_{2}}-Nr'\right) -s'k')}}\right] \end{aligned}$$
(24)

where

$$\begin{aligned}&{{F}_{4}}({{k}_{1}},{{k}_{2}},{{n}_{1}},s)= \sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}}}\nonumber \\&\sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}({{k}_{2}}{{s}_{1}}-{{k}_{1}}({{s}_{1}}+{{n}_{1}}-s))}} \nonumber \\&{{F}_{5}}\left( {{O}_{1}},{{n}_{2}},s'\right) \nonumber \\&=\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}{{O}_{1}}\left( {{n}_{2}}-s'\right) }}} \end{aligned}$$
(25)

The cases where \(O_1\) is equal to \(k_1\) or \(k_2\) should be septated to consider the \(\gamma _4\). Thus,

$$\begin{aligned}&{{A}_{1}}=\frac{1}{{{(UN)}^{4}}{{N}^{2}}}\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}} \sqrt{{{p}_{{{n}_{2}}-Nr',r'}}} \nonumber \\&\sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{1}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \left( {{\gamma }_{2}}{{\gamma } _{4}}{{F}_{4}}({{k}_{1}},{{k}_{2}},{{n}_{1}},s){{F}_{5}} \left( {{k}_{1}},{{n}_{2}},s'\right) \right. \nonumber \\&+\,{{\gamma }_{2}}{{\gamma }_{4}}{{F}_{4}}({{k}_{1}},{{k}_{2}},{{n}_{1}} ,s){{F}_{5}}\left( {{k}_{2}},{{n}_{2}},s'\right) \nonumber \\&\left. +\,\gamma _{2}^{3} {\mathop{\mathop\sum\limits _{{{O}_{1}}=0}}\limits_{{{O}_{1}}\ne {{k}_{1}},{{k}_{2}}}}^{N-1}{{{F}_{4}}({{k}_{1}},{{k}_{2}},{{n}_{1}},s) {{F}_{5}}\left( {{O}_{1}},{{n}_{2}},s'\right) }\right) \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-{{k}_{1}}\left( {{n}_{1}}-Nr'\right) -sk' +{{k}_{2}}\left( {{n}_{2}}-Nr'\right) -s'k')}}\right] \end{aligned}$$
(26)

Similarly, in the second one \((O_2=k_1,O_1=k_2,q_1=q_2)\), to sperate the cases in which \(q_1\) is equal to \(k_1\) or \(k_2\), the function \(F_6\) is defined as

$$\begin{aligned}&{{A}_{2}}=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}} \sqrt{{{p}_{{{n}_{2}}-Nr',r'}}} }{{{(UN)}^{4}}{{N}^{2}}} E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}} {\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}\right. \nonumber \\&\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}} \sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}} {{e}^{-\frac{j2\pi }{N} \left( {{k}_{2}}{{l}_{1}}-{{k}_{1}}\left( {{l}_{1}}-{{n}_{2}}+s'\right) \right) }} \nonumber \\&\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{q}_{1}}=0}^{N-1} {\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}}} |{{a}_{{{q}_{1}}}}{{|}^{2}} \nonumber \\&\left. {{e}^{-\frac{j2\pi }{N}{{q}_{1}}(s-{{n}_{1}})}}{{e}^{\frac{j2\pi }{N} \left( -{{k}_{1}}\left( {{n}_{1}}-Nr'\right) -sk'+{{k}_{2}}\left( {{n}_{2}}-Nr'\right) -s'k'\right) }}\right] \nonumber \\&=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}} {{N}^{2}}}E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1} {\frac{|{{a}_{{{k}_{1}}}} {{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \right. \nonumber \\&\sum \limits _{{{q}_{1}}=0}^{N-1}{|{{a}_{{{q}_{1}}}}{{|}^{2}}{{F}_{6}}\left( {{k}_{1}}, {{k}_{2}},{{n}_{2}}-Nr',s'\right) {{F}_{7}}\left( {{q}_{1}},{{n}_{1}}-Nr',s\right) } \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}\left( -{{k}_{1}}\left( {{n}_{1}}-Nr'\right) -sk'+{{k}_{2}}\left( {{n}_{2}}-Nr'\right) -s'k'\right) }}\right] \end{aligned}$$
(27)

where

$$\begin{aligned}&{{F}_{6}}({{k}_{1}},{{k}_{2}},{{n}_{2}}-Nr',s') \nonumber \\&= \sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}}{{e}^{-\frac{j2\pi }{N}({{k}_{2}}{{l}_{1}}-{{k}_{1}}({{l}_{1}}-{{n}_{2}}+s'))}} \nonumber \\&{{F}_{7}}({{q}_{1}},{{n}_{1}}-Nr',s) \nonumber \\&=\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{s}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{s}_{1}}+{{n}_{1}}-s-r'N,r'}}}{{e}^{-\frac{j2\pi }{N}{{q}_{1}}(s-{{n}_{1}})}}} \end{aligned}$$
(28)

The separation for considering the exact value of \(\gamma _4\) is as follows

$$\begin{aligned}&{{A}_{2}}=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}\sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{1}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \nonumber \\&({{\gamma }_{2}}{{\gamma }_{4}}{{F}_{6}}({{k}_{1}},{{k}_{2}},{{n}_{2}}-Nr',s'){{F}_{7}}({{k}_{2}},{{n}_{1}}-Nr',s) \nonumber \\&+{{\gamma }_{2}}{{\gamma }_{4}}{{F}_{6}}({{k}_{1}},{{k}_{2}},{{n}_{2}}-Nr',s'){{F}_{7}}({{k}_{1}},{{n}_{1}}-Nr',s) \nonumber \\&+\gamma _{2}^{3}\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{{{F}_{6}}({{k}_{1}},{{k}_{2}},{{n}_{2}}-Nr',s'){{F}_{7}}({{q}_{1}},{{n}_{1}}-Nr',s)}) \nonumber \\&{{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}} \end{aligned}$$
(29)

In the third case (\(q_2=k_1,O_1=k_2,q_1=O_2\)), the cases where \(q_1\) is equal to \(k_1\) or \(k_2\) should be separated for considering exact value of \(\gamma _4\). But note that these cases are considered in \(A_1\). Thus, these cases should be omitted from the calculation which leads to the definition of function \(F_8\) as

$$\begin{aligned}&{{A}_{3}}=\frac{1}{{{(UN)}^{4}}{{N}^{2}}}\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}} \nonumber \\&E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{{}}}}\right. \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}} \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}{{e}^{-\frac{j2\pi }{N} \left( {{q}_{1}}{{s}_{1}}-{{k}_{1}}({{s}_{1}}+{{n}_{1}}-s)+{{k}_{2}}{{l}_{1}}-{{q}_{1}}({{l}_{1}}-{{n}_{2}}+s')\right) }} \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}}\right] \nonumber \\&= \frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}E\left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}} {\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}\right. \nonumber \\& \mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{|{{a}_{{{q}_{1}}}}{{|}^{2}}{{F}_{8}}(k_1,k_2,q_1,n_1{-}Nr',n_2{-}Nr',s,s')}\nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}}\right] \end{aligned}$$
(30)

where

$$\begin{aligned}&{{F}_{8}}({{k}_{1}},{{k}_{2}},{{q}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s') \nonumber \\&= \sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}}} \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}} \nonumber \\&{{e}^{-\frac{j2\pi }{N}({{q}_{1}}{{s}_{1}}-{{k}_{1}}({{s}_{1}}+{{n}_{1}}-s)+{{k}_{2}}{{l}_{1}}-{{q}_{1}}({{l}_{1}}-{{n}_{2}}+s'))}} \end{aligned}$$
(31)

Thus, the final value of \(A_3\) is as follows

$$\begin{aligned}&A_3= \frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}\sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{\gamma _2^3}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \nonumber \\&\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{{{F}_{8}}({{k}_{1}},{{k}_{2}},{{q}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s')} \nonumber \\&{{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}} \end{aligned}$$
(32)

Again, in the forth case \(O_2=k_1,q_1=k_2,O_1=q_2\), the cases where \(q_1\) is equal to \(k_1\) or \(k_2\) are calculated in \(A_2\). Thus, theses cases are omitted by defining \(F_9\) as

$$\begin{aligned}&A_4=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}E \left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}}\right. \nonumber \\&\sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{{}}}}\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}} \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}} \sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}\nonumber \\&{{e}^{-\frac{j2\pi }{N}({{k}_{2}}{{s}_{1}}-{{q}_{1}}({{s}_{1}}+{{n}_{1}}-s)+{{q}_{1}}{{l}_{1}}-{{k}_{1}}({{l}_{1}}-{{n}_{2}}+s'))}} \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}}\right] \nonumber \\&= \frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}E \left[ \sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{|{{a}_{{{k}_{1}}}}{{|}^{2}}|a_{{{k}_{2}}}^{{}}{{|}^{2}}}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}}\right. \nonumber \\&\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{|{{a}_{{{q}_{1}}}}{{|}^{2}}{{F}_{9}}({{k}_{1}},{{k}_{2}},{{q}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s')} \nonumber \\&\left. {{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}}\right] \nonumber \\ \end{aligned}$$
(33)

where

$$\begin{aligned}&{{F}_{9}}({{k}_{1}},{{k}_{2}},{{q}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s') \nonumber \\&= \sum \limits _{{{l}_{1}}={r}'N}^{{r}'N+N-1}{\sum \limits _{{{s}_{1}}={r}'N}^{{r}'N+N-1}{\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}}} \nonumber \\&\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-r'N,r'}}}\sqrt{{{p}_{{{l}_{1}}-{{n}_{2}}+s'-r'N,r'}}} \nonumber \\&{{e}^{-\frac{j2\pi }{N}({{k}_{2}}{{s}_{1}}-{{q}_{1}}({{s}_{1}}+{{n}_{1}}-s)+{{q}_{1}}{{l}_{1}}-{{k}_{1}}({{l}_{1}}-{{n}_{2}}+s'))}} \end{aligned}$$
(34)

Thus, the final value of \(A_4\) is as follows

$$\begin{aligned}&{{A}_{4}}=\frac{\sqrt{{{p}_{{{n}_{1}}-Nr',r'}}}\sqrt{{{p}_{{{n}_{2}}-Nr',r'}}}}{{{(UN)}^{4}}{{N}^{2}}}\sum \limits _{s'=0}^{N-1}{\sum \limits _{s=0}^{N-1}{\frac{\gamma _2^3}{\sqrt{{{p}_{s,r}}{{p}_{s',r}}}}}} \nonumber \\&\mathop{\sum\limits_{{{q}_{1}}=0}}\limits_{{{q}_{1}}\ne {{k}_{1}},{{k}_{2}}}^{N-1}{{{F}_{9}}({{k}_{1}},{{k}_{2}},{{q}_{1}},{{n}_{1}}-Nr',{{n}_{2}}-Nr',s,s')} \nonumber \\&{{e}^{\frac{j2\pi }{N}(-{{k}_{1}}({{n}_{1}}-Nr')-sk'+{{k}_{2}}({{n}_{2}}-Nr')-s'k')}} \nonumber \\ \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghani, M., Mohammadi, A. & Majidi, M. An accurate analysis of the nonlinear power amplifier effects on SC-FDMA signals. Wireless Netw 25, 533–543 (2019). https://doi.org/10.1007/s11276-017-1573-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1573-3

Keywords

Navigation