Skip to main content
Log in

Effective multi-stage error control algorithms for robust 3D video transmission over wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Three-Dimensional Video (3DV) contains diverse video streams taken by different cameras around an object. Thence, it is an imperative assignment to fulfill efficient compression to match the future resource limitations, whilst preserving a decisive reception 3DV quality. The efficient 3DV communication over wireless networks has become a recent considerable hot issue due to the restricted resources and the presence of severe channel errors. The high-rate 3DV encoding and transmission over mobile or Internet are vulnerable to packet losses due to the existence of heavy channel losses and limited bandwidth. Therefore, this paper presents efficient multi-stage error control algorithms for reliable 3DV transmission over error-prone wireless channels. At the encoder, the error resilience schemes of context adaptive variable length coding, slice structured coding, and explicit flexible macro-block ordering are utilized. At the decoder, a joint approach of a directional interpolation error concealment algorithm and a directional textural motion coherence algorithm is proposed to conceal the corrupted color frames. For the concealment of the lost depth frames, an encoder independent decoder dependent depth-assisted error concealment algorithm is suggested. Moreover, the weighted overlapping block motion and disparity compensation algorithm is exploited to choose the candidate concealment Motion Vectors (MVs) and Disparity Vectors (DVs). Furthermore, an improved recursive Bayesian filtering algorithm is utilized as a refinement stage to smooth the remaining errors in the previously selected candidate MVs and DVs for achieving better 3DV quality. Simulation results on several 3DV sequences show that the proposed algorithms achieve adequate objective and subjective 3DV quality performance at severe packet loss rates compared to the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zeng, H., Wang, X., Cai, C., Chen, J., & Zhang, Y. (2014). Fast multiview video coding using adaptive prediction structure and hierarchical mode decision. IEEE Transactions on Circuits and Systems for Video Technology, 24(9), 1566–1578.

    Article  Google Scholar 

  2. Xiang, W., Gao, P., & Peng, Q. (2015). Robust multiview three-dimensional video communications based on distributed video coding. IEEE Systems Journal, 99, 1–11.

    Google Scholar 

  3. Purica, A., Mora, E., Pesquet, B., Cagnazzo, M., & Ionescu, B. (2016). Multiview plus depth video coding with temporal prediction view synthesis. IEEE Transactions on Circuits and Systems for Video Technology, 26(2), 360–374.

    Article  Google Scholar 

  4. Chakareski, J. (2013). Adaptive multiview video streaming: challenges and opportunities. IEEE Communications Magazine, 51(5), 94–100.

    Article  Google Scholar 

  5. Abreu, A., Frossard, P., & Pereira, F. (2015). Optimizing multiview video plus depth prediction structures for interactive multiview video streaming. IEEE Journal of Selected Topics in Signal Processing, 9(3), 487–500.

    Article  Google Scholar 

  6. Shokrollahi, M. (2014). Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters. U.S. Patent, 8, 887, 020.

  7. Hewage, C., & Martini, M. (2013). Quality of experience for 3D video streaming. IEEE Communications Magazine, 51(5), 101–107.

    Article  Google Scholar 

  8. Liu, Z., Cheung, G., & Ji, Y. (2013). Optimizing distributed source coding for interactive multiview video streaming over lossy networks. IEEE Transactions on Circuits and Systems for Video Technology, 23(10), 1781–1794.

    Article  Google Scholar 

  9. El-Shafai, W., Hrušovský, B., El-Khamy, M., El-Sharkawy, M. (2011). Joint space-time-view error concealment algorithms for 3D multi-view video. In 18th IEEE international conference on image processing (ICIP) (pp. 2201–2204).

  10. El-Shafai, W. (2013) Optimized adaptive space-time-view multi-dimentional error concealment for 3D multi-view video transmission. In IEEE Saudi international electronics, communications and photonics conference (SIECPC) (pp. 1–6).

  11. El-Shafai, W. (2015). Pixel-level matching based multi-hypothesis error concealment modes for wireless 3D H.264/MVC communication. 3D Research, 6(3), 31.

    Article  Google Scholar 

  12. El-Shafai, W. (2015). Joint adaptive pre-processing resilience and post-processing concealment schemes for 3D video transmission. 3D Research, 6(1), 1–13.

    Article  Google Scholar 

  13. Yang, D., Liu, T., Liu, S. M., Chen, F. C. (2016). An adaptive spatial-temporal error concealment scheme based on H.264/AVC. In A. Hussain (Ed.), Electronics, communications and networks V. Lecture notes in electrical engineering (Vol. 382). Singapore: Springer.

    Google Scholar 

  14. Zhou, Y., Xiang, W., & Wang, G. (2015). Frame loss concealment for multiview video transmission over wireless multimedia sensor networks. IEEE Sensors Journal, 15(3), 1892–1901.

    Article  Google Scholar 

  15. Lee, P., Kuo, K., & Chi, C. (2014). An adaptive error concealment method based on fuzzy reasoning for multi-view video coding. Journal of Display Technology, 10(7), 560–567.

    Article  Google Scholar 

  16. Ibrahim, A., Sadka, A. (2014). Error resilience and concealment for multiview video coding. In Proceedings of the IEEE international symposium on broadband multimedia systems and broadcasting (pp. 1–5).

  17. Memon, M., Li, J., Memon, I., & Arain, Q. (2017). GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications, 76(14), 15377–15411.

    Article  Google Scholar 

  18. Memon, M., Khan, A., Li, J., Shaikh, R., & Memon, I., Deep, S. (2014). Content based image retrieval based on geo-location driven image tagging on the social web. In 11th IEEE international computer conference on wavelet active media technology and information processing (ICCWAMTIP) (pp. 280–283).

  19. Vetrivel, S., & Athisha, G. (2014). Video streaming: Single and compound report transcoding method. Asian Journal of Information Technology, 13, 300–307.

    Google Scholar 

  20. Memon, M., Shaikh, R., Li, J., Khan, A., Memon, I., & Deep, S. (2014). Unsupervised feature approach for content based image retrieval using principal component analysis. In 11th IEEE international computer conference on wavelet active media technology and information processing (ICCWAMTIP) (pp. 271–275).

  21. Memon, M., Li, J., Memon, I., Shaikh, R., & Mangi, F. (2015). Efficient object identification and multiple regions of interest using CBIR based on relative locations and matching regions. In 12th IEEE international computer conference on Wavelet active media technology and information processing (ICCWAMTIP) (pp. 247–250).

  22. Salim, O., Xiang, W., & Leis, J. (2013). An efficient unequal error protection scheme for 3-D video transmission. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (pp. 4077–4082).

  23. Huo, Y., El-Hajjar, M., & Hanzo, L. (2013). Inter-layer FEC aided unequal error protection for multilayer video transmission in mobile TV. IEEE Transactions on Circuits and Systems for Video Technology, 23(9), 1622–1634.

    Article  Google Scholar 

  24. Yan, B., & Zhou, J. (2012). Efficient frame concealment for depth image-based 3-d video transmission. IEEE Transactions on Multimedia, 14(3), 936–941.

    Article  Google Scholar 

  25. Liu, Y., Wang, J., & Zhang, H. (2010). Depth image-based temporal error concealment for 3-d video transmission. IEEE Transactions on Circuits and Systems for Video Technology, 20(4), 600–604.

    Article  Google Scholar 

  26. Chung, T., Sull, S., & Kim, C. (2011). Frame loss concealment for stereoscopic video plus depth sequences. IEEE Transactions on Consumer Electronics, 57(3), 1336–1344.

    Article  Google Scholar 

  27. Tai, S. C., Wang, C. C., Hong, C. S., & Luo, Y. C. (2016). An effiicient full frame algorithm for object-based error concealment in 3D depth-based video. Multimedia tools and applications, 75(16), 9927–9947.

    Article  Google Scholar 

  28. Khattak, S., Maugey, T., & Hamzaoui, R. (2016). Temporal and inter-view consistent error concealment technique for multiview plus depth video. IEEE Transactions on Circuits and Systems for Video Technology, 26(5), 829–840.

    Article  Google Scholar 

  29. Assunçao, P., Marcelino, S., Soares, S., & Faria, S. (2016). Spatial error concealment for intra-coded depth maps in multiview video-plus-depth. Multimedia Tools and Applications, 76(12), 13835–13858.

    Article  Google Scholar 

  30. Wang, H., & Wang, X. (2016). Important macroblock distinction model for multi-view plus depth video transmission over error-prone network. Multimedia Tools and Applications, 1–23.

  31. H.264/AVC codec; September 2016. http://iphome.hhi.de/suehring/tml/.

  32. Xiang, X., Zhao, D., Wang, Q., Ji, X., & Gao, W. (2007). A novel error concealment method for stereoscopic video coding. In Proceedings of the IEEE international conference on image processing (pp. 101–104).

  33. Gao, Z., & Lie, W. (2004). Video error concealment by using Kalman-filtering technique. In Proceedings of the IEEE international symposium on circuits and systems (pp. 69–72).

  34. Cui, S., Huijuan, C., & Kun, T. (2012). An effective error concealment scheme for heavily corrupted H.264/AVC videos based on Kalman filtering. Journal of Signal, Image and Video Processing, 8(8), 1533–1542.

    Article  Google Scholar 

  35. Hwang, M., Kim, J., Duong, D., & Ko, S. (2008). Hybrid temporal error concealment methods for block-based compressed video transmission. IEEE Transactions on Broadcasting, 54(2), 198–207.

    Article  Google Scholar 

  36. Chen, M., Chen, L., & Weng, R. (1997). Error concealment of lost motion vectors with overlapped motion compensation. IEEE Transactions on Circuits and Systems for Video Technology, 7(3), 560–563.

    Article  Google Scholar 

  37. ISO/IEC JTC1. (2006). Common test conditions for multiview video coding (JVT-U207) (pp 1–9).

  38. WD 4 reference software for multiview video coding (mvc); August 2016. http://wftp3.itu.int/av-arch/jvt-site/2009_01_Geneva/JVT-AD207.zip.

  39. Lie, W., Lee, C., Yeh, C., & Gao, Z. (2014). Motion vector recovery for video error concealment by using iterative dynamic-programming optimization. IEEE Transactions on Multimedia, 16(1), 216–227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. El-Shafai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shafai, W., El-Rabaie, S., El-Halawany, M.M. et al. Effective multi-stage error control algorithms for robust 3D video transmission over wireless networks. Wireless Netw 25, 1619–1640 (2019). https://doi.org/10.1007/s11276-017-1618-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1618-7

Keywords

Navigation