Skip to main content

Advertisement

Log in

Urban noise mapping with a crowd sensing system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Noise pollution poses a serious threat to people living in cities today. To alleviate the negative impact of noise pollution, an urban noise mapping can be helpful. In this paper, we present the design of NoiseSense, a crowd sensing system for housing a real-time urban noise mapping service. A major challenge in building such a system is caused by the sparsity problem of the limited noise measurement data from smartphones. To tackle this challenge, we propose a hybrid approach including a neighborhood-based noise level estimation method and a semi-supervised tensor completion algorithm for inferring noise levels for locations without measurements by smartphone users. This approach leverages a variety of urban data sources, such as Point of Interests, road networks, and check-in data. We also provide a noise prediction method for forecasting the noise levels in the next few hours. We implemented the system and developed an APP for smartphone users. We conducted experiments and field study. The experimental results show that the proposed approach is superior in inferring noise levels merely with sparse measurements from smartphone users. And the prediction approach also outperforms other baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The “unfold” operation along the kth mode on a tensor \(\varvec{X}\) is defined by \(unfol{d_k}({\varvec{X}} ): = {{\varvec{X}}_{(k)}} \in {R^{{I_k} \times ({{I_1}, \ldots {I_{k - 1,}} \ldots {I_N}})}}\)

References

  1. Liu, J., Przemyslaw, M., Wonka, P., & Jieping, Y. (2009). Ear-phone: An end-to-end participatory urban noise mapping system. In IEEE International Conference on Computer Vision (pp. 2114–2121).

  2. Zhu, Y., Li, J., Liu, L., & Tham, C. -K. (2015). iCal: Intervention-free calibration for measuring noise with smartphones. In IEEE ICPADS (pp. 85–91).

  3. Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3), 455–500.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zheng, Y., Liu, T., Wang, Y., Liu, Y., & Zhu, Y. (2014). Diagnosing New York city‘s noises with ubiquitous data. In ACM UBICOMP.

  5. Liu, J., Musialski, P., Wonka, P., & Ye, J. (2013). Tensor completion for estimating missing values in visual data. IEEE Transaction on Pattern Analysis and Machine Intelligence (pp. 208–220).

  6. Jr Pierre, R. L. St., & Maguire, D. J. (2004). The impact of a-weighting sound pressure level measurements during the evaluation of noise exposure. In National Conference on Noise Control Engineering (pp. 702–708).

  7. STORM: Distributed and fault-tolerant real-time computation. http://storm.apache.org.

  8. Qin, Z., & Zhu, Y. (2016). NoiseSense: A crowd sensing system for urban noise mapping service. In IEEE ICPADS (pp. 80–87).

  9. Tsai, K.-T., Lin, M.-D., & Chen, Y.-H. (2009). Noise mapping in urban environments: A taiwan study. Applied Acoustics, 70(7), 964–972.

    Article  Google Scholar 

  10. Rana, R. K., Chou, C. T., Kanhere, S. S., Bulusu, N., & Hu, W. (2010). Ear-phone: An end-to-end participatory urban noise mapping system. In ACM/IEEE IPSN (pp. 105–116).

  11. Maisonneuve, N., Stevens, M., Niessen, M. E., & Steels, L. (2009). Noisetube: Measuring and mapping noise pollution with mobile phones. In I. N. Athanasiadis, A. E. Rizzoli, P. A. Mitkas, & J. M. Gómez (Eds.), Information Technologies in Environmental Engineering (pp. 215–228) New York: Springer.

    Chapter  Google Scholar 

  12. Noisetube website and community memory. (2009). http://www.noisetube.net.

  13. Hasenfratz, D., Saukh, O., Sturzenegger, S., & Thiele, L. (2012). Participatory air pollution monitoring using smartphones. Mobile Sensing, 1, 1–5.

    Google Scholar 

  14. Stevens, M., & DHondt, E. (2010). Crowdsourcing of pollution data using smartphones. In Workshop on Ubiquitous Crowdsourcing

  15. Wang, Y., Liu, X., Wei, H., Forman, G., Chen, C., & Zhu, Y. (2013). Crowdatlas: Self-updating maps for cloud and personal use. In ACM MOBISYS (pp. 27–40).

  16. DHondt, E., Stevens, M., & Jacobs, A. (2013). Participatory noise mapping works! an evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive and Mobile Computing, 9(5), 681–694.

    Article  Google Scholar 

  17. Nirjon, S., Dickerson, R. F., Asare, P., Li, Q., Hong, D., Stankovic, J. A., Hu, P., Shen, G., & Jiang, X. (2013). Auditeur: A mobile-cloud service platform for acoustic event detection on smartphones. In ACM MOBISYS (pp. 403–416).

  18. Cands, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6), 717–772.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cands, E. J., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.

    Article  Google Scholar 

  20. Gogna, A., & Majumdar, A. (2015). Matrix completion incorporating auxiliary information for recommender system design. Expert System, 42(14), 5789–5799.

    Article  Google Scholar 

  21. Yi, K., Wan, J., Yao, L., & Bao, T. (2015). Partial matrix completion algorithm for efficient data gathering in wireless sensor networks. IEEE Communications Letters, 19(1), 54–57.

    Article  Google Scholar 

  22. Cabral, J. P., Costeira, R. S., De la Torre, F., & Bernardino, A. (2015). Matrix completion for weakly-supervised multi-label image classification. IEEE Transaction on Pattern Analysis, 37(1), 121–135.

    Article  Google Scholar 

  23. Lamb, R. G., & Seinfeld, J. H. (1973). Mathematical modeling of urban air pollution. General theory. Environmental Science and Technology, 7(3), 253–261.

    Article  Google Scholar 

  24. Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010). Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In ACM Conference on Recommender Systems (pp. 79–86).

  25. Yang, Y., Feng, Y., & Suykens, J. A. K. (2015). A rank-one tensor updating algorithm for tensor completion. IEEE Signal Processing Letters, 20(10), 1633–1637.

    Article  Google Scholar 

  26. Zhao, Q., Zhang, L., & Cichocki, A. (2015). Bayesian sparse tucker models for dimension reduction and tensor completion. CoRR (pp. 1505–1520).

Download references

Acknowledgements

This research is supported in part by 973 Program (2014CB340303), 863 Program (No. 2015AA015303), NSFC (Nos. 61472254, 61170238 and 61420106010), STCSM (Grant Nos. 14511107500 and 15DZ1100305), Research Grant for Young Faculty in Shenzhen Polytechnic (No. 601522K30015), SZSTI (No. JCYJ20160407160609492) and Singapore NRF (CREATE E2S2). This work is also supported by the Program for New Century Excellent Talents in University of China, the Program for Changjiang Young Scholars in University of China, and the Program for Shanghai Top Young Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhu, Y. & Qin, Z. Urban noise mapping with a crowd sensing system. Wireless Netw 25, 2351–2364 (2019). https://doi.org/10.1007/s11276-018-1663-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1663-x

Keywords

Navigation