Skip to main content

Advertisement

Log in

Pulse-level beam-switching for terahertz networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Communication in Terahertz (THz) band is envisioned as a promising technology to meet the ever-growing data rate demand, and to enable new applications in both nano-scale and macro-scale wireless paradigms. In this study, we propose the first system-level design that is suitable for THz communication in macro-scale range with 100+ Gbps data rate. The design is based on the proposed terahertz pulse-level beam-switching with energy control (TRPLE), and motivated by the rise in Graphene-based electronics, which include not only compact generator and detector for pulse communication, but also the capability of beam scanning aided with nano-antenna-arrays. The very high path loss seen in THz wireless channel requires the use of narrow beam to reach longer transmission ranges. On the other hand, impulse radio that emits femtosecond-long pulses allows the beam direction to steer at pulse-level, rather than at packet-level. For TRPLE, we mathematically analyze the data rate for an arbitrary wireless link under the THz channel characteristics and the energy modulation scheme. Then, a novel optimization model is formulated to solve the parameters of the inter-pulse separation and the inter-symbol separation, in order to maximize the data rate while meeting the interference requirement. With the optimization, the data rate of 167 Gbps is shown achievable for most users in 20-m range. A MAC protocol framework is then presented to harness the benefits of the pulse separation optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In the case of LOS, \(\psi\) is NULL.

References

  1. Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive mimo (1024 × 1024) communication in the (0.06-10) terahertz band. Nano Communication Networks, 8, 46–54.

    Article  Google Scholar 

  2. Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.

    Article  Google Scholar 

  3. Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 21(4), 130–135.

    Article  Google Scholar 

  4. An, X., Venkatesha Prasad, R., & Niemegeers, I. (2011). Impact of antenna pattern and link model on directional neighbor discovery in 60 GHz networks. IEEE Transactions on Wireless Communications, 10(5), 1435–1447.

    Article  Google Scholar 

  5. Beckmann, P., & Spizzichino, A. (1987). The scattering of electromagnetic waves from rough surfaces (p. 1). Norwood: Artech House Inc.

    MATH  Google Scholar 

  6. Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access, 5, 21497–21507.

    Article  Google Scholar 

  7. Cacciapuoti, A. S., Subramanian, R., Chowdhury, K. R., & Caleffi, M. (2017). Software-defined network controlled switching between millimeter wave and terahertz small cells. http://arxiv.org/abs/1702.02775.

  8. Choudhury, R., Yang, X., Ramanathan, R., & Vaidya, N. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491.

    Article  Google Scholar 

  9. Esquius-Morote, M., Gomez-Diaz, J., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122.

    Article  Google Scholar 

  10. Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101–111122.

    Article  Google Scholar 

  11. Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116.

    Article  Google Scholar 

  12. Jornet, J., & Akyildiz, I. (2011a). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.

    Article  Google Scholar 

  13. Jornet, J., & Akyildiz, I. (2011b). Information capacity of pulse-based wireless nanosensor networks. In IEEE SECON (pp. 80–88).

  14. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.

    Article  Google Scholar 

  15. Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205.

    Google Scholar 

  16. Koch, M. (2007). Terahertz communications: A 2020 vision. In Terahertz frequency detection and identification of materials and objects (pp. 325–338). Netherlands: Springer.

  17. Korakis, T., Jakllari, G., & Tassiulas, L. (2008). CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(2), 145–155.

    Article  Google Scholar 

  18. Liberti, J., & Rappaport, T. (1996). A geometrically based model for line-of-sight multipath radio channels. In Vehicular technology conference (pp. 844–848, Vol. 2).

  19. Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131.

    Article  Google Scholar 

  20. Lin, J., & Weitnauer, M. (2014). Pulse-level beam-switching MAC with energy control in picocell terahertz networks. In Proceedings of IEEE GLOBECOM (pp. 4460–4465).

  21. Llatser, I., Cabellos-Aparicio, A., Alarcn, E., Jornet, J. M., Mestres, A., Lee, H., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333.

    Google Scholar 

  22. Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In INFOCOM 2009 (pp. 2871–2875). IEEE.

  23. Ning, J., Kim, T. S., Krishnamurthy, S. V., & Cordeiro, C. (2011). Directional neighbor discovery in 60 GHz indoor wireless networks. Performance Evaluation, 68(9), 897–915.

    Article  Google Scholar 

  24. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015a). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  25. Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015b). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.

    Article  Google Scholar 

  26. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., & Kurner, T. (2005). Terahertz characterisation of building materials. Electronics Letters, 41(18), 1002–1004.

    Article  Google Scholar 

  27. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.

    Article  Google Scholar 

  28. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506.

    Article  Google Scholar 

  29. Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

    Article  Google Scholar 

  30. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  31. Singh, S., Ziliotto, F., Madhow, U., Belding, E., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.

    Article  Google Scholar 

  32. Tamagnone, M., Gomez-Diaz, J., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.

    Article  Google Scholar 

  33. Vicarelli, L., Vitiello, M., Coquillat, D., Lombardo, A., Ferrari, A., Knap, W., et al. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10), 865–871.

    Article  Google Scholar 

  34. Vien, Q. T., Agyeman, M. O., Le ,T. A., & Mak, T. (2017). On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Mathematical Problems in Engineering (Article ID 9768604).

  35. Yildirim, F., & Liu, H. (2009). A cross-layer neighbor-discovery algorithm for directional 60-GHz networks. IEEE Transactions on Vehicular Technology, 58(8), 4598–4604.

    Article  Google Scholar 

  36. Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.

    Article  Google Scholar 

  37. Yu, Y. J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., & Kim, P. (2009). Tuning the graphene work function by electric field effect. Nano Letters, 9(10), 3430–3434.

    Article  Google Scholar 

  38. Zhang, X., Zhou, S., Wang, X., Niu, Z., Lin, X., Zhu, D., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE International Conference on Communications (ICC) (pp. 4803–4807). IEEE.

Download references

Acknowledgements

This work was funded by the US National Science Foundation (NSF) under Grant No. CCF-1349828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lin.

Additional information

The material in this paper was presented in part at the annual conference of the Global Communications Conference (GLOBECOM), Dec 2014, Austin, TX, USA [20].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Weitnauer, M.A. Pulse-level beam-switching for terahertz networks. Wireless Netw 25, 3047–3062 (2019). https://doi.org/10.1007/s11276-018-1702-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1702-7

Keywords

Navigation