Skip to main content

Advertisement

Log in

Green transmission for C-RAN based on SWIPT in 5G: a review

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

C-RAN is a promising new design for the next generation, an important aspect of it in the energy efficiency consideration. Hence, it is considering an innovative candidate to use it as an alternative cellular network instead of the traditional. Investigation green transmission of mobile cloud radio access networks based on SWIPT for 5G cellular networks. Especially, with considering SWIPT as a future solution for increasing the lifetime of end-user battery’s, that’s mean this technique will improving energy efficiency (EE). Addressing SWIPT into C-RAN is a challenging and it is needed to developing a new algorithm to use it on the cellular network with many trying to ensure the success of the system performance. C-RAN as a network and SWIPT as a promising technique with the suggesting green wireless network are discussed besides the importance of energy efficiency for the next generation. Furthermore, there was a study on fifth enabling technologies that can be used for 5G with emphasis on two of them (C-RAN and energy efficiency). Lastly, research challenges and future direction that require substantial research efforts are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137.

    Google Scholar 

  2. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Google Scholar 

  3. Kong, Z., et al., (2013). eBase: A Baseband Unit Cluster Testbed to Improve Energy-Efficiency for Cloud Radio Access Network. In 2013 IEEE international conference on communications (pp. 4222–4227). New York: IEEE.

  4. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18(Part 2), 64–84.

    Google Scholar 

  5. Gesbert, D., et al. (2010). Multi-cell MIMO cooperative networks: A new look at interference. IEEE Journal on Selected Areas in Communications, 28(9), 1380–1408.

    Google Scholar 

  6. Wu, J., et al. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.

    Google Scholar 

  7. Zhang, H., et al. (2017). Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach. IEEE Transactions on Wireless Communications, 17, 1882–1892.

    Google Scholar 

  8. Zhang, H., et al. (2016). Resource allocation in SWIPT enabled heterogeneous cloud small cell networks with incomplete CSI.

  9. Krikidis, I., et al. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.

    Google Scholar 

  10. Zhang, H. J., et al. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.

    Google Scholar 

  11. Ma, Y. N., et al. (2016). Optimization of simultaneous wireless information and power transfer in cloud radio access networks. In 2016 IEEE 83rd vehicular technology conference.

  12. Le, N. T., et al. (2016). Survey of promising technologies for 5G networks. Mobile Information Systems, p. 25.

  13. Andrews, J. G., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    MathSciNet  Google Scholar 

  14. Zhang, S., et al. (2014). 5G: Towards energy-efficient, low-latency and high-reliable communications networks. In 2014 IEEE international conference on communication systems.

  15. Jia, S., et al. (2014). Analyzing and relieving the impact of FCD traffic in LTE-VANET heterogeneous network. In 2014 21st international conference on telecommunications (ICT).

  16. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Google Scholar 

  17. Heath Jr., R. W. (2013). Coverage and capacity analysis of mm wave cellular systems. In Presentation delivered at Int. conf. on communi. (ICC).

  18. Alkhateeb, A., et al. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.

    Google Scholar 

  19. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Google Scholar 

  20. Ben-Dor, E., et al. (2011). Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. IEEE.

  21. Akdeniz, M. R., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Google Scholar 

  22. Murdock, J. N., et al. (2012). A 38 GHz cellular outage study for an urban outdoor campus environment. In 2012 IEEE wireless communications and networking conference (WCNC). IEEE.

  23. Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.

    Google Scholar 

  24. Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.

    Google Scholar 

  25. Rusek, F., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Google Scholar 

  26. Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Green small-cell networks. IEEE Vehicular Technology Magazine, 6(1), 37–43.

    Google Scholar 

  27. Chen, K., & Duan, R. (2011). C-RAN: the road towards green RAN. China mobile research institute, p. 2.

  28. Hicham, M., Abghour, N., & Ouzzif, M. (2016). Cloud radio access network technology for the next fifth generation mobile networks. Journal of Theoretical and Applied Information Technology, 93(2), 375–384.

    Google Scholar 

  29. Rost, P., et al. (2014). Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 52(5), 68–76.

    Google Scholar 

  30. Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.

    Google Scholar 

  31. Li, C., Zhang, J., & Letaief, K. B. (2013). Energy efficiency analysis of small cell networks. In 2013 IEEE international conference on communications (ICC).

  32. Tombaz, S., et al. (2011). Impact of backhauling power consumption on the deployment of heterogeneous mobile networks. In 2011 IEEE global telecommunications conferenceGLOBECOM 2011.

  33. Rao, J. B., & Fapojuwo, A. O. (2013). On the tradeoff between spectral efficiency and energy efficiency of homogeneous cellular networks with outage constraint. IEEE Transactions on Vehicular Technology, 62(4), 1801–1814.

    Google Scholar 

  34. Wu, J. (2012). Green wireless communications: from concept to reality [industry perspectives]. IEEE Wireless Communications, 19(4), 4–5.

    Google Scholar 

  35. Wang, K. Z., et al. (2016). Cost-effective resource allocation in C-RAN with mobile cloud. In 2016 IEEE international conference on communications.

  36. Peng, M., et al. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.

    Google Scholar 

  37. Peng, M., et al. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.

    Google Scholar 

  38. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84.

    Google Scholar 

  39. Peng, M., et al. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.

    Google Scholar 

  40. Simeone, O., et al. (2016). Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems. Journal of Communications and Networks, 18(2), 135–149.

    Google Scholar 

  41. Shi, Y., et al. (2013). Group sparse beamforming for green cloud radio access networks. In 2013 IEEE global communications conference (pp. 4662–4667). New York: IEEE.

  42. Zhang, H. J., et al. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.

    Google Scholar 

  43. Dahrouj, H., et al. (2015). Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), 66–73.

    Google Scholar 

  44. Ghods, F., et al. (2015). Energy efficiency and spectrum efficiency in cooperative cloud radio access network. In 2015 IEEE pacific rim conference on communications, computers and signal processing (pp. 280–285). New York: IEEE.

  45. Chu, Z., Johnston, M., & Le Goff, S. (2015). SWIPT for wireless cooperative networks. Electronics Letters, 51(6), 536–538.

    Google Scholar 

  46. Lien, S. Y., et al. (2015). Ultra-low-latency ubiquitous connections in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 22–31.

    Google Scholar 

  47. Mengjun, Y., et al. (2015). Self-healing based on cooperative transmission via bender’s decomposition in cloud radio access network. China Communications, 12(11), 43–52.

    Google Scholar 

  48. Zeng, T. C., et al. (2015). Green circuit design for battery-free sensors in cloud radio access network. China Communications, 12(11), 1–11.

    Google Scholar 

  49. Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.

    Google Scholar 

  50. Ghods, F., Fapojuwo, A., & Ghannouchi, F. (2016). Throughput reliability analysis of cloud-radio access networks. Wireless Communications and Mobile Computing, 16(17), 2824–2838.

    Google Scholar 

  51. Yu, Z., et al. (2016). Dynamic resource allocation in TDD-based heterogeneous cloud radio access networks. China Communications, 13(6), 1–11.

    Google Scholar 

  52. Wang, Y. Y., Peng, M. G., & Zhang, K. C. (2016). Economy-efficient resource allocation in cloud radio access networks with fronthaul capacity constraints. In M. S. Obaidat, et al. (Eds.), 2016 international conference on computer, information and telecommunication systems (pp. 215–219).

  53. Sigwele, T., et al. (2017). Energy-efficient cloud radio access networks by cloud based workload consolidation for 5G. Journal of Network and Computer Applications, 78, 1–8.

    Google Scholar 

  54. Luo, S. X., Zhang, R., & Lim, T. J. (2015). Downlink and uplink energy minimization through user association and beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), 494–508.

    Google Scholar 

  55. Miyanabe, K., et al. (2015). A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wireless Communications, 22(4), 58–64.

    Google Scholar 

  56. Yoon, C., & Cho, D. H. (2015). Energy efficient beamforming and power allocation in dynamic TDD based C-RAN system. IEEE Communications Letters, 19(10), 1806–1809.

    Google Scholar 

  57. Alhumaima, R. S., & Al-Raweshidy, H. S. (2016). Evaluating the energy efficiency of software defined-based cloud radio access networks. IET Communications, 10(8), 987–994.

    Google Scholar 

  58. Liu, Z., et al. (2016). Research on load balancing in C-RAN with femtocells. Telkomnika (Telecommunication Computing Electronics and Control), 14(1), 86–90.

    Google Scholar 

  59. Alhumaima, R. S., Khan, M., & Al-Raweshidy, H. S. (2016). Component and parameterised power model for cloud radio access network. IET Communications, 10(7), 745–752.

    Google Scholar 

  60. Checko, A., et al. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172.

    Google Scholar 

  61. Douik, A., et al. (2016). Coordinated scheduling and power control in cloud-radio access networks. IEEE Transactions on Wireless Communications, 15(4), 2523–2536.

    Google Scholar 

  62. Li, J., et al. (2016). Queue-aware energy-efficient joint remote radio head activation and beamforming in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(6), 3880–3894.

    Google Scholar 

  63. Vu, T. X., Nguyen, T. V., & Quek, T. Q. S. (2016). Power optimization with BLER constraint for wireless fronthauls in C-RAN. IEEE Communications Letters, 20(3), 602–605.

    Google Scholar 

  64. Zhao, Z. Y., et al. (2016). Cluster content caching: An energy-efficient approach to improve quality of service in cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(5), 1207–1221.

    Google Scholar 

  65. Zhou, Y., & Yu, W. (2016). Fronthaul compression and transmit beamforming optimization for multi-antenna uplink C-RAN. IEEE Transactions on Signal Processing, 64(16), 4138–4151.

    MathSciNet  MATH  Google Scholar 

  66. Qiao, G. H., et al. (2016). Multiple time-scale energy scheduling with energy harvesting aided heterogeneous cloud radio access networks. In 2016 IEEE/Cic international conference on communications in China (Iccc).

  67. Patel, M., et al. (2014). Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative.

  68. Chih-Lin, I., et al. (2014). Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2), 66–73.

    Google Scholar 

  69. Fan, C., Zhang, Y. J. A., & Yuan, X. (2016). Advances and challenges toward a scalable cloud radio access network. IEEE Communications Magazine, 54(6), 29–35.

    Google Scholar 

  70. Xu, X. D., et al. (2016). A frameless network architecture for the way forward of C-RAN. China Communications, 13(6), 154–166.

    Google Scholar 

  71. Sundaresan, K., et al. (2016). FluidNet: A flexible cloud-based radio access network for small cells. IEEE/ACM Transactions on Networking, 24(2), 915–928.

    Google Scholar 

  72. Sauer, M., Kobyakov, A., & Ng’Oma, A. (2009). Radio over fiber for picocellular network architectures. In 2009 IEEE LEOS annual meeting conference proceedings.

  73. Monteiro, P. P., & Gameiro, A. (2014). Hybrid Fibre infrastructures for cloud radio access networks. In M. Jaworski, & M. Marciniak (Eds.), 2014 16th international conference on transparent optical networks, New York: IEEE.

  74. Pengyu, L., et al. (2014). The study of C-RAN application on broadband wireless access for high-speed railway. In Wireless communications, networking and mobile computing (WiCOM 2014), 10th international conference on.

  75. Kim, S. (2016). News-vendor game-based resource allocation scheme for next-generation C-RAN systems. Eurasip Journal on Wireless Communications and Networking, 2016(1), 158.

    Google Scholar 

  76. Kim, S. (2016). Dynamic C-RAN resource sharing scheme based on a hierarchical game approach. Eurasip Journal on Wireless Communications and Networking, 2016(1), 1–12.

    Google Scholar 

  77. Fehske, A., et al. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.

    Google Scholar 

  78. Auer, G., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.

    Google Scholar 

  79. Wu, G., et al. (2015). Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.

    Google Scholar 

  80. Buzzi, S., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709.

    Google Scholar 

  81. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 93–100.

    Google Scholar 

  82. Chen, Y., et al. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Google Scholar 

  83. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.

    Google Scholar 

  84. Zappone, A., & Jorswieck, E. A. (2017). Energy-efficient resource allocation in future wireless networks by sequential fractional programming. Digital Signal Processing, 60, 324–337.

    Google Scholar 

  85. Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 2011.

  86. Yousafzai, A., et al. (2017). Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowledge and Information Systems, 50(2), 347–381.

    Google Scholar 

  87. Awoyemi, B. S., Maharaj, B. T. J., & Alfa, A. S. (2016). Solving resource allocation problems in cognitive radio networks: a survey. Eurasip Journal on Wireless Communications and Networking, 2016(1), 176.

    Google Scholar 

  88. Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11(3–4), 185–396.

    MATH  Google Scholar 

  89. Zhang, H., et al. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, PP(99), 1.

    Google Scholar 

  90. Zhang, H., et al. (2016). Secure communications in NOMA system: Subcarrier assignment and power allocation. arXiv preprint arXiv:1801.04441, 2018.

  91. Mumford, R. (2016). 5G manifesto for deployment of 5G in Europe. Norwood: Horizon House Publications Inc.

    Google Scholar 

  92. Hassan, H. A. H., Nuaymi, L., & Pelov, A. (2013). Renewable energy in cellular networks: A survey. In 2013 IEEE online conference on green communications (OnlineGreenComm).

  93. Ulukus, S., et al. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.

    Google Scholar 

  94. Lu, X., et al. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.

    MathSciNet  Google Scholar 

  95. Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.

    Google Scholar 

  96. Liu, L., Zhang, R., & Chua, K.-C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications, 12(1), 288–300.

    Google Scholar 

  97. Gurakan, B., et al. (2013). Energy cooperation in energy harvesting communications. IEEE Transactions on Communications, 61(12), 4884–4898.

    Google Scholar 

  98. Chia, Y. K., Sun, S. M., & Zhang, R. (2014). Energy cooperation in cellular networks with renewable powered base stations. IEEE Transactions on Wireless Communications, 13(12), 6996–7010.

    Google Scholar 

  99. Huang, K. B., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.

    MathSciNet  MATH  Google Scholar 

  100. Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Wireless information and power transfer: Energy efficiency optimization in OFDMA systems. IEEE Transactions on Wireless Communications, 12(12), 6352–6370.

    Google Scholar 

  101. Sun, Q., Li, L., & Mao, J. (2014). Simultaneous information and power transfer scheme for energy efficient MIMO systems. IEEE Communications Letters, 18(4), 600–603.

    Google Scholar 

  102. Guo, S., et al. (2015). Energy-efficient cooperative T for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417.

    Google Scholar 

  103. Yang, W., et al. (2016). Energy efficiency analysis and enhancement for secure transmission in SWIPT systems exploiting full duplex techniques. IET Communications, 10(14), 1712–1720.

    Google Scholar 

  104. Ng, D. W. K., & Schober, R. (2015). Secure and green SWIPT in distributed antenna networks with limited backhaul capacity. IEEE Transactions on Wireless Communications, 14(9), 5082–5097.

    Google Scholar 

  105. Akbar, S., et al. (2016). Simulatneous wireless information and power transfer in K-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(8), 5804–5818.

    Google Scholar 

  106. Dong, Y., Hossain, M. J., & Cheng, J. (2016). Joint power control and time switching for SWIPT systems with heterogeneous QoS requirements. IEEE Communications Letters, 20(2), 328–331.

    Google Scholar 

  107. Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.

    Google Scholar 

  108. Lee, K., & Hong, J. P. (2016). Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Transactions on Vehicular Technology, 65(4), 2775–2780.

    Google Scholar 

  109. Sheng, M., et al. (2016). Energy efficient beamforming in MISO heterogeneous cellular networks with wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 954–968.

    Google Scholar 

  110. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Google Scholar 

  111. Ikhlef, A. (2014). Optimal MIMO multicast transceiver design for simultaneous information and power transfer. IEEE Communications Letters, 18(12), 2153–2156.

    Google Scholar 

  112. Zhao, S., et al. (2014). Antenna selection for simultaneous wireless information and power transfer in MIMO systems. IEEE Communications Letters, 18(5), 789–792.

    Google Scholar 

  113. Fang, B., et al. (2015). AN-aided secrecy precoding for SWIPT in cognitive MIMO broadcast channels. IEEE Communications Letters, 19(9), 1632–1635.

    Google Scholar 

  114. Timotheou, S., et al. (2015). Spatial domain simultaneous information and power transfer for MIMO channels. IEEE Transactions on Wireless Communications, 14(8), 4115–4128.

    Google Scholar 

  115. Wang, S., & Wang, B. (2015). Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(11), 2147–2151.

    Google Scholar 

  116. Wu, W., & Wang, B. (2015). Efficient transmission solutions for MIMO wiretap channels with SWIPT. IEEE Communications Letters, 19(9), 1548–1551.

    Google Scholar 

  117. Amarasuriya, G., Larsson, E. G., & Poor, H. V. (2016). Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Transactions on Wireless Communications, 15(6), 3837–3855.

    Google Scholar 

  118. Wen, Z., et al. (2016). Joint source and relay beamforming design for full-duplex MIMO AF relay SWIPT systems. IEEE Communications Letters, 20(2), 320–323.

    Google Scholar 

  119. Xiao, J., et al. (2016). Robust transceiver design for two-user MIMO interference channel with simultaneous wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3823–3828.

    Google Scholar 

  120. Zhang, J., et al. (2016). Large system secrecy rate analysis for SWIPT MIMO wiretap channels. IEEE Transactions on Information Forensics and Security, 11(1), 74–85.

    Google Scholar 

  121. Zong, Z. Y., et al. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445.

    Google Scholar 

  122. Lam, T. T., Di Renzo, M., & Coon, J. P. (2016). System-level analysis of SWIPT MIMO cellular networks. IEEE Communications Letters, 20(10), 2015–2018.

    Google Scholar 

  123. Khandaker, M. R. A., & Wong, K. K. (2014). SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 3(3), 277–280.

    Google Scholar 

  124. Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.

    MathSciNet  MATH  Google Scholar 

  125. Shi, Q., et al. (2014). Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Transactions on Wireless Communications, 13(6), 3269–3280.

    Google Scholar 

  126. Shi, Q., et al. (2014). Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm. IEEE Transactions on Signal Processing, 62(23), 6194–6208.

    MathSciNet  MATH  Google Scholar 

  127. Xu, J., Liu, L., & Zhang, R. (2014). Multiuser miso beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62(18), 4798–4810.

    MathSciNet  MATH  Google Scholar 

  128. Feng, R., et al. (2015). Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Transactions on Vehicular Technology, 64(1), 400–405.

    Google Scholar 

  129. Lee, H., et al. (2015). Optimal Beamforming designs for wireless information and power transfer in MISO interference channels. IEEE Transactions on Wireless Communications, 14(9), 4810–4821.

    Google Scholar 

  130. Luo, S., et al. (2015). Capacity region of MISO broadcast channel for simultaneous wireless information and power transfer. IEEE Transactions on Communications, 63(10), 3856–3868.

    Google Scholar 

  131. Tian, M., et al. (2015). Robust AN-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Processing Letters, 22(6), 723–727.

    Google Scholar 

  132. Wang, F., et al. (2015). Robust transceiver optimization for power-splitting based downlink MISO SWIPT systems. IEEE Signal Processing Letters, 22(9), 1492–1496.

    Google Scholar 

  133. Zhang, H., et al. (2015). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.

    Google Scholar 

  134. Zhang, Q., et al. (2015). Cooperative jamming aided robust secure transmission for wireless information and power transfer in MISO channels. IEEE Transactions on Communications, 63(3), 906–915.

    Google Scholar 

  135. Zhao, X., et al. (2015). Joint optimization of AN-aided transmission and power splitting for MISO secure communications with SWIPT. IEEE Communications Letters, 19(11), 1969–1972.

    Google Scholar 

  136. Chu, Z., et al. (2016). Robust beamforming and power splitting design in MISO SWIPT downlink system. IET Communications, 10(6), 691–698.

    Google Scholar 

  137. Shi, Q., et al. (2016). Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming. IEEE Transactions on Signal Processing, 64(4), 842–854.

    MathSciNet  MATH  Google Scholar 

  138. Fang, Z., Yuan, X., & Wang, X. (2014). Distributed energy beamforming for simultaneous wireless information and power transfer in the two-way relay channel. IEEE Signal Processing Letters, 22(6), 656–660.

    Google Scholar 

  139. Li, G., et al. (2014). High-rate relay beamforming for simultaneous wireless information and power transfer. Electronics Letters, 50(23), 1759–1761.

    Google Scholar 

  140. Li, Q., Zhang, Q., & Qin, J. (2014). Beamforming in non-regenerative two-way multi-antenna relay networks for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 13(10), 5509–5520.

    Google Scholar 

  141. Li, Q., Zhang, Q., & Qin, J. (2014). Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Transactions on Vehicular Technology, 63(5), 2462–2467.

    Google Scholar 

  142. Chen, H., et al. (2015). Distributed power splitting for SWIPT in relay interference channels using game theory. IEEE Transactions on Wireless Communications, 14(1), 410–420.

    Google Scholar 

  143. Ding, K., Yu, Y., & Lin, H. (2015). Analysis of RWPT relays for intermediate-range simultaneous wireless information and power transfer system. Progress in Electromagnetics Research Letters, 57, 111–116.

    Google Scholar 

  144. Song, M., et al. (2015). Probabilistic-constrained simultaneous wireless information and power transfer for multiple-relay networks. Journal of Communications, 10(7), 497–502.

    Google Scholar 

  145. Di, X., et al. (2016). Simultaneous wireless information and power transfer in two-hop OFDM decode-and-forward relay networks. KSII Transactions on Internet and Information Systems, 10(1), 152–167.

    Google Scholar 

  146. Huang, G., & Tang, D. (2016). Wireless information and power transfer in two-way OFDM amplify-and-forward relay networks. IEEE Communications Letters, 20(8), 1563–1566.

    Google Scholar 

  147. Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.

    Google Scholar 

  148. Yang, Z., et al. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.

    Google Scholar 

  149. Zhang, D., et al. (2016). Two-hop co-located robust precoding design in radio SWIPT relay networks. Journal of Communications, 11(1), 71–76.

    Google Scholar 

  150. Zhang, G., et al. (2016). Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multipleoutput relaying systems. IET Communications, 10(7), 796–804.

    Google Scholar 

  151. Ding, Z. G., & Poor, H. V. (2016). Multi-user SWIPT cooperative networks: Is the max-min criterion still diversity-optimal? IEEE Transactions on Wireless Communications, 15(1), 553–567.

    Google Scholar 

  152. Liu, Y., et al. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Google Scholar 

  153. Mishra, D., De, S., & Chiasserini, C. F. (2016). Joint optimization schemes for cooperative wireless information and power transfer over rician channels. IEEE Transactions on Communications, 64(2), 554–571.

    Google Scholar 

  154. Mohjazi, L., Muhaidat, S., & Dianati, M. (2016). Performance analysis of differential modulation in SWIPT cooperative networks. IEEE Signal Processing Letters, 23(5), 620–624.

    Google Scholar 

  155. Boshkovska, E., et al. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085.

    Google Scholar 

  156. Ng, D. W. K., Lo, E. S., & Schober, R. (2016). Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3166–3184.

    Google Scholar 

  157. Yin, S., & Qu, Z. (2016). Resource allocation in multiuser OFDM systems with wireless information and power transfer. IEEE Communications Letters, 20(3), 594–597.

    Google Scholar 

  158. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory.

  159. Ding, Z., et al. (2015). Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Communications Magazine, 53(4), 86–93.

    Google Scholar 

  160. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Google Scholar 

  161. Zhang, R., Maunder, R. G., & Hanzo, L. (2015). Wireless information and power transfer: From scientific hypothesis to engineering practice. IEEE Communications Magazine, 53(8), 99–105.

    Google Scholar 

  162. Zheng, G., et al. (2014). Information and energy cooperation in cognitive radio networks. IEEE Transactions on Signal Processing, 62(9), 2290–2303.

    MathSciNet  MATH  Google Scholar 

  163. Krikidis, I., et al. (2014). A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels. IEEE Transactions on Communications, 62(5), 1577–1587.

    Google Scholar 

  164. Timotheou, S., & Krikidis, I. (2013). Joint information and energy transfer in the spatial domain with channel estimation error. In 2013 IEEE online conference on green communications (OnlineGreenComm).

  165. Larsson, E. G., et al. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Google Scholar 

  166. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.

    Google Scholar 

  167. Soh, Y. S., et al. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.

    Google Scholar 

  168. Björnson, E., Sanguinetti, L., & Kountouris, M. (2016). Deploying dense networks for maximal energy efficiency: Small cells meet massive MIMO. IEEE Journal on Selected Areas in Communications, 34(4), 832–847.

    Google Scholar 

  169. Niu, Z., et al. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.

    Google Scholar 

  170. Oh, E., Son, K., & Krishnamachari, B. (2013). Dynamic base station switching-on/off strategies for green cellular networks. IEEE Transactions on Wireless Communications, 12(5), 2126–2136.

    Google Scholar 

  171. Alaba, F. A., et al. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28.

    Google Scholar 

  172. Wang, F., et al. (2017). Recent advances in the internet of things: Multiple perspectives. Iete Technical Review, 34(2), 122–132.

    Google Scholar 

  173. Friess, P. (2013). Internet of things: Converging technologies for smart environments and integrated ecosystems. River Publishers.

  174. Evans, D. (2012). The internet of things how the next evolution of the internet is changing everything (April 2011). White Paper by Cisco Internet Business Solutions Group (IBSG).

  175. Ejaz, W., ul Hasan, N., & Kim, H. S. (2011). Spectrum sensing in cognitive radio mobile ad hoc networks: A survey. 한국통신학회 학술대회논문집, pp. 376–377.

  176. Cheng, P., et al. (2012). Resource allocation for cognitive networks with D2D communication: An evolutionary approach. In 2012 IEEE wireless communications and networking conference (WCNC).

  177. Gandotra, P., Kumar Jha, R., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29.

    Google Scholar 

  178. Sedidi, R., & Kumar, A. (2016). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In A. L. Beylot et al. (Eds.), 2016 wireless days.

  179. Wang, C. X., et al. (2016). Recent advances and future challenges for massive MIMO channel measurements and models. Science China-Information Sciences, 59(2), 16.

    Google Scholar 

  180. Ali, E., et al. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 18(6), 753–772.

    Google Scholar 

  181. Nam, J., et al. (2012). Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information. In 2012 46th annual conference on information sciences and systems (CISS).

  182. Ku, Y. J., et al. (2017). 5G radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Communications Magazine, 55(4), 46–52.

    Google Scholar 

  183. Kim, S. (2017). Fog radio access network system control scheme based on the embedded game model. Eurasip Journal on Wireless Communications and Networking, 2017(1), 113.

    Google Scholar 

  184. Peng, M. G., & Zhang, K. C. (2016). Recent advances in fog radio access networks: performance analysis and radio resource allocation. IEEE Access, 4, 5003–5009.

    Google Scholar 

  185. Zhang, H. J., et al. (2017). Fog radio access networks: mobility management, interference mitigation, and resource optimization. IEEE Wireless Communications, 24(6), 120–127.

    Google Scholar 

  186. Islam, S. M. R., et al. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.

    Google Scholar 

  187. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, E98B(3), 403–414.

    Google Scholar 

  188. Zhang, H., et al. (2018). Energy-efficient resource allocation in NOMA heterogeneous networks. arXiv preprint arXiv:1801.04552.

  189. Zhang, H., et al. Resource allocation in NOMA based fog radio access networks.

  190. Marotta, M. A., et al. (2015). Resource sharing in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 74–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadhil Mukhlif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhlif, F., Noordin, K.A.B., Mansoor, A.M. et al. Green transmission for C-RAN based on SWIPT in 5G: a review. Wireless Netw 25, 2621–2649 (2019). https://doi.org/10.1007/s11276-018-1718-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1718-z

Keywords

Navigation