Skip to main content
Log in

A fuzzy geographical routing approach to support real-time multimedia transmission for vehicular ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad hoc networks known by their greatly active topology have given rise to new challenges related to routing protocols, issues of less concern in infrastructure-based networks or even in mobile ad hoc networks. Indeed, the high revocability of network topology makes the satisfaction of driver’s requirements very arduous, especially with multimedia applications that need strict quality of service (QoS) support. The main purpose of this paper is to promote real time video traffic by maximizing user gratification while keeping a good QoS. Thus, based on the well-known greedy perimeter stateless routing (GPSR) protocol, we propose a new approach called fuzzy geographical routing (FzGR) that incorporates two fuzzy logic usages. The first takes into consideration three input parameters of QoS: the delay, the size of buffer and the throughput, while it outputs a single relevant metric to prioritize the next-hop with lower concern. The other fuzzy system aims at preserving the concept of basic GPSR by considering the distance measure between each next-hop and the final destination. The proposal has been evaluated and compared to the GPSR using a rigorous metrics analysis regarding QoS and quality of experience. Our extensive experimental results using several simulators (e.g., NS-2, VanetMobiSim and Evalvid), show that FzGR has the ability to increase the performance of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yang, F., Wang, S., Li, J., Liu, Z., & Sun, Q. (2014). An overview of internet of vehicles. China Communications, 11(10), 1–15.

    Article  Google Scholar 

  2. Rehman, O., Ould-Khaoua, M., & Bourdoucen, H. (2016). An adaptive relay nodes selection scheme for multi-hop broadcast in VANETs. Computer Communications, 87, 76–90.

    Article  Google Scholar 

  3. Marfia, G., Roccetti, M., Amoroso, A., & Pau, G. (2013). Safe driving in LA: Report from the greatest intervehicular accident detection test ever. IEEE Transactions on Vehicular Technology, 62(2), 522–535.

    Article  Google Scholar 

  4. Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2016). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems, 62(1), 15–30.

    Article  Google Scholar 

  5. Zarei, M., Rahmani, A. M., & Samimi, H. (2017). Connectivity analysis for dynamic movement of vehicular ad hoc networks. Wireless Networks, 23(3), 843–858.

    Article  Google Scholar 

  6. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In Vehicular technology conference, 2008. VTC spring 2008. IEEE (pp. 2036–2040). IEEE.

  7. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2013). Comparative study of variant position-based VANET routing protocols. Procedia Technology, 11, 532–539.

    Article  Google Scholar 

  8. Jabbarpour, M. R., Marefat, A., Jalooli, A., Noor, R. M., Khokhar, R. H., & Lloret, J. (2015). Performance analysis of V2V dynamic anchor position-based routing protocols. Wireless Networks, 21(3), 911–929.

    Article  Google Scholar 

  9. Zaimi, I., Houssaini, Z.S., Boushaba, A., & Oumsis, M. (2016). An improved GPSR protocol to enhance the video quality transmission over vehicular ad hoc networks. In 2016 international conference on wireless networks and mobile communications (WINCOM) (pp. 146–153). IEEE.

  10. Wischhof, L., Ebner, A., & Rohling, H. (2005). Information dissemination in self-organizing intervehicle networks. IEEE Transactions on Intelligent Transportation Systems, 6(1), 90–101.

    Article  Google Scholar 

  11. Zadeh, L.A. (1988). Fuzzy logic. Computer, 21(4), 83–93.

    Article  Google Scholar 

  12. Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2014). Intelligent multipath optimized link state routing protocol for QoS and QoE enhancement of video transmission in MANETs. In Networked systems. Lecture Notes in Computer Science (Vol. 8593, pp. 230–245). Cham: Springer.

  13. Kumuthini, C., & Krishnakumari, P. (2016). Evolving intuitionistic fuzzy priority classifier with bio-inspiration based scheduling scheme for WiMAX in vehicular ad-hoc networks. Wireless Networks, 22(2), 403–415.

    Article  Google Scholar 

  14. Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2016). An intelligent multipath optimized link state routing protocol for QoS and QoE enhancement of video transmission in MANETs. Computing, 98(8), 803–825.

    Article  MathSciNet  Google Scholar 

  15. Jiau, M. K., Huang, S. C., Hwang, J. N., & Vasilakos, A. V. (2015). Multimedia services in cloud-based vehicular networks. IEEE Intelligent Transportation Systems Magazine, 7(3), 62–79.

    Article  Google Scholar 

  16. Naeimipoor, F., Rezende, C., & Boukerche, A. (2012). Performance evaluation of video dissemination protocols over vehicular networks. In 2012 IEEE 37th conference on local computer networks workshops (LCN Workshops) (pp. 694–701). IEEE.

  17. Xie, F., Hua, K. A., Wang, W., & Ho, Y. H. (2007). Performance study of live video streaming over highway vehicular ad hoc networks. In 2007 IEEE 66th vehicular technology conference (pp. 2121–2125). IEEE.

  18. Zaimi, I., Houssaini, Z. S., Boushaba, A., & Oumsis, M. (2016). A new improved GPSR (GPSR-kP) routing protocol for multimedia communication over vehicular ad hoc network. In Proceedings of the international conference on big data and advanced wireless technologies (p. 14). ACM.

  19. Kwon, S., & Shroff, N. B. (2006). Geographic routing in the presence of location errors. Computer Networks, 50(15), 2902–2917.

    Article  MATH  Google Scholar 

  20. Shah, R. C., Wolisz, A., & Rabaey, J. M. (2005). On the performance of geographical routing in the presence of localization errors [ad hoc network applications]. In 2005 IEEE international conference on communications, 2005. ICC 2005 (Vol. 5, pp. 2979–2985). IEEE.

  21. Kaur, S., & Kaur, K. (2016). An new improved GPSR (I-GPSR) routing protocol for VANET. Imperial Journal of Interdisciplinary Research, 2(7), 1192–1196.

    Google Scholar 

  22. Bouras, C., Kapoulas, V., & Tsanai, E. (2015). A GPSR enhancement mechanism for routing in VANETs. In Wired/wireless internet communications. Lecture Notes in Computer Science (Vol. 9071, pp. 94–107). Berlin: Springer.

  23. Zhang, X. M., Chen, K. H., Cao, X. L., & Sung, D. K. (2016). A street-centric routing protocol based on microtopology in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 65(7), 5680–5694.

    Article  Google Scholar 

  24. Jerbi, M., Meraihi, R., Senouci, S. M., & Ghamri-Doudane, Y. (2006). Gytar: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments. In Proceedings of the 3rd international workshop on vehicular ad hoc networks (pp. 88–89). ACM.

  25. Zhang, X., Cao, X., Yan, L., & Sung, D. K. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 15(7), 1586–1599.

    Article  Google Scholar 

  26. Alsaqour, R., Abdelhaq, M., Saeed, R., Uddin, M., Alsukour, O., Al-Hubaishi, M., et al. (2015). Dynamic packet beaconing for GPSR mobile ad hoc position-based routing protocol using fuzzy logic. Journal of Network and Computer Applications, 47, 32–46.

    Article  Google Scholar 

  27. Khokhar, R. H., Noor, R. M., Ghafoor, K. Z., Ke, C. H., & Ngadi, M. A. (2011). Fuzzy-assisted social-based routing for urban vehicular environments. EURASIP Journal on Wireless Communications and Networking, 2011(1), 178.

    Article  Google Scholar 

  28. Boukerche, A., Câmara, D., Loureiro, A. A., & Figueiredo, C. M. (2009). Algorithms for mobile ad hoc networks. Algorithms and protocols for wireless and mobile ad hoc networks, Chapter 1 (pp. 1–20). Wiley.

  29. Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 2, pp. 404–413). IEEE.

  30. Takagi, H., & Kleinrock, L. (1984). Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Transactions on Communications, 32(3), 246–257.

    Article  Google Scholar 

  31. Ghazani, S. H. H. N. (2013). Algorithms for mobile ad hoc networks. In 2013 7th international conference on application of information and communication technologies (AICT) (pp. 1–4). IEEE.

  32. Hou, T. C., & Li, V. (1986). Transmission range control in multihop packet radio networks. IEEE Transactions on Communications, 34(1), 38–44.

    Article  Google Scholar 

  33. Finn, G. G. (1987). Routing and addressing problems in large metropolitan-scale internetworks. Technical report., DTIC Document.

  34. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254). ACM.

  35. Zaimi, I., Houssaini, Z. S., Boushaba, A., Oumsis, M., & Aboutajdine, D. (2018). An evaluation of routing protocols for vehicular ad-hoc network considering the video stream. Wireless Personal Communications, 98(1), 945–981.

    Article  Google Scholar 

  36. Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2015). Multi-point relay selection strategies to reduce topology control traffic for OLSR protocol in MANETs. Journal of Network and Computer Applications, 53, 91–102.

    Article  Google Scholar 

  37. Zhao, J., & Bose, B. K. (2002) Evaluation of membership functions for fuzzy logic controlled induction motor drive. In IECON 02. IEEE 2002 28th annual conference of the industrial electronics society (Vol. 1, pp. 229–234). IEEE.

  38. Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36(1), 59–83.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zadeh, L. A. (1965). Information and control. Fuzzy Sets, 8(3), 338–353.

    Google Scholar 

  40. Cirstea, M., Dinu, A., McCormick, M., & Khor, J. G. (2002). Neural and fuzzy logic control of drives and power systems. Oxford: Newnes.

    Google Scholar 

  41. Horikawa, S. I., Furuhashi, T., Okuma, S., & Uchikawa, Y. (1990). Composition methods of fuzzy neural networks. In 16th annual conference of IEEE industrial electronics society, 1990. IECON’90 (pp. 1253–1258). IEEE .

  42. Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121(12), 1585–1588.

    Article  Google Scholar 

  43. Camastra, F., Ciaramella, A., Giovannelli, V., Lener, M., Rastelli, V., Staiano, A., et al. (2015). A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Systems with Applications, 42(3), 1710–1716.

    Article  MATH  Google Scholar 

  44. Mohammad, R., Mostafa, A., Abbas, M., & Farouq, H. M. (2015). Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system. International Journal of Mining Science and Technology, 25(1), 23–30.

    Article  Google Scholar 

  45. Boukerche, A. (2008). Algorithms and protocols for wireless, mobile ad hoc networks (Vol. 77). New York: Wiley.

    Book  MATH  Google Scholar 

  46. Artimy, M. M., Robertson, W., & Phillips, W. J. (2009). Vehicular ad hoc networks: An emerging technology toward safe and efficient transportation. Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks, Wiley, Chapter 14 (pp. 433–457). Wiley.

  47. Chen, Z. D., Kung, H., & Vlah, D. (2001). Ad hoc relay wireless networks over moving vehicles on highways. In Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking and computing (pp. 247–250). ACM .

  48. Füßler, H., Mauve, M., Hartenstein, H., Käsemann, M., & Vollmer, D. (2004). A comparison of routing strategies for vehicular ad hoc networks. Technical reports (Vol. 2).

  49. Rahman, M. H., Morshed, M. M., & Rahman, M. U. (2014). Realistic vehicular mobility impact of FTM, IDM, IDM-IM and IDM-LC on VANETs. International Journal of Computer Applications, 90(11), 1712–1719.

    Google Scholar 

  50. De Felice, M., Cerqueira, E., Melo, A., Gerla, M., Cuomo, F., & Baiocchi, A. (2015). A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Computer Communications, 58, 40–52.

    Article  Google Scholar 

  51. Park, J. S., Lee, U., & Gerla, M. (2010). Vehicular communications: Emergency video streams and network coding. Journal of Internet Services and Applications, 1(1), 57–68.

    Article  Google Scholar 

  52. Ziviani, A., Wolfinger, B. E., De Rezende, J. F., Duarte, O. C. M., & Fdida, S. (2005). Joint adoption of QoS schemes for MPEG streams. Multimedia Tools and Applications, 26(1), 59–80.

    Article  Google Scholar 

  53. Graphics, M. (2009). Media lab. Msu video quality measurement tool. http://compression.ru/video/quality_measure/video_measurement_tool_en.html. Accessed Jan 2009.

  54. Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182.

    Article  Google Scholar 

  55. Cacheda, R., García, D., Cuevas, A., Castaño, F., Sánchez, J., Koltsidas, G., Mancuso, V., Novella, J., Oh, S., & Pantò, A. (2007). QoS requirements for multimedia services. Resource management in satellite networks (pp. 67–94). Boston, MA: Springer.

  56. Khan, I., & Qayyum, A. (2009). Performance evaluation of AODV and OLSR in highly fading vehicular ad hoc network environments. In IEEE 13th international multitopic conference, 2009. INMIC 2009 (pp. 1–5). IEEE.

  57. Lee, K. C., Härri, J., Lee, U., & Gerla, M. (2007). Enhanced perimeter routing for geographic forwarding protocols in urban vehicular scenarios. In Globecom workshops, 2007 IEEE (pp. 1–10). IEEE.

  58. Barba, C. T., Aguiar, L. U., & Igartua, M. A. (2013). Design and evaluation of GBSR-B, an improvement of GPSR for VANETs. IEEE Latin America Transactions, 11(4), 1083–1089.

    Article  Google Scholar 

  59. Tripp-Barba, C., Urquiza-Aguiar, L., Igartua, M. A., Rebollo-Monedero, D., de la Cruz Llopis, L. J., Mezher, A. M., et al. (2014). A multimetric, map-aware routing protocol for VANETs in urban areas. Sensors, 14(2), 2199–2224.

    Article  Google Scholar 

  60. Chen, Y., Li, C., Han, X., Gao, M., & Zhu, L. (2014). A reliable beaconless routing protocol for VANETs. In 2014 IEEE international conference on computer and information technology (CIT) (pp. 94–99). IEEE.

  61. Li, G., Ma, M., Liu, C., & Shu, Y. (2015). Adaptive fuzzy multiple attribute decision routing in VANETs. International Journal of Communication Systems, 30(4).

  62. Bouras, C., Kapoulas, V., Stathopoulos, N., & Gkamas, A. (2016). Mechanisms for enhancing the performance of routing protocols in VANETs. In Proceedings of the 13th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (pp. 11–18). ACM.

  63. Gupta, K. P. (2016). A review on multipath vehicular ad hoc routing protocol (VANET) routing protocol. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 1712–1719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Zaimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaimi, I., Boushaba, A., Squalli Houssaini, Z. et al. A fuzzy geographical routing approach to support real-time multimedia transmission for vehicular ad hoc networks. Wireless Netw 25, 1289–1311 (2019). https://doi.org/10.1007/s11276-018-1729-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1729-9

Keywords

Navigation