Skip to main content
Log in

Authenticated key agreement scheme for fog-driven IoT healthcare system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The convergence of cloud computing and Internet of Things (IoT) is partially due to the pragmatic need for delivering extended services to a broader user base in diverse situations. However, cloud computing has its limitation for applications requiring low-latency and high mobility, particularly in adversarial settings (e.g. battlefields). To some extent, such limitations can be mitigated in a fog computing paradigm since the latter bridges the gap between remote cloud data center and the end devices (via some fog nodes). However, fog nodes are often deployed in remote and unprotected places. This necessitates the design of security solutions for a fog-based environment. In this paper, we investigate the fog-driven IoT healthcare system, focusing only on authentication and key agreement. Specifically, we propose a three-party authenticated key agreement protocol from bilinear pairings. We introduce the security model and present the formal security proof, as well as security analysis against common attacks. We then evaluate its performance, in terms of communication and computation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alrawais, A., Alhothaily, A., Hu, C., & Cheng, X. (2017). Fog computing for the internet of things: Security and privacy issues. IEEE Internet Computing, 21(2), 34–42.

    Article  Google Scholar 

  2. Amin, R., Kumar, N., Biswas, G., Iqbal, R., & Chang, V. (2018). A light weight authentication protocol for iot-enabled devices in distributed cloud computing environment. Future Generation Computer Systems, 78, 1005–1019.

    Article  Google Scholar 

  3. Bellare, M., Pointcheval, D., & Rogaway, P. (2000). Authenticated key exchange secure against dictionary attacks. Tecnologia Electronica E Informatica, 1807, 139–155.

    MATH  Google Scholar 

  4. Bonomi, F., Milito, R., Natarajan, P., & Zhu, J. (2014). Fog computing: A platform for internet of things and analytics. In Big data and internet of things: A roadmap for smart environments (pp. 169–186). Cham: Springer.

  5. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13–16). ACM.

  6. Chaudhry, S. A., Naqvi, H., Mahmood, K., Ahmad, H. F., & Khan, M. K. (2017). An improved remote user authentication scheme using elliptic curve cryptography. Wireless Personal Communications, 96(4), 5355–5373.

    Article  Google Scholar 

  7. Choo, K. K. R. (2009). Secure key establishment, advances in information security (Vol. 41). Berlin: Springer.

    Book  Google Scholar 

  8. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT ehealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems, 78, 659–676.

    Article  Google Scholar 

  9. Farash, M. S., Turkanović, M., Kumari, S., & Hölbl, M. (2016). An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Networks, 36, 152–176.

    Article  Google Scholar 

  10. Gia, T. N., Jiang, M., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2015, October). Fog computing in healthcare internet of things: A case study on ecg feature extraction. In IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM)  (pp. 356–363). IEEE.

  11. Hamid, H. A. A., Rahman, S. M. M., Hossain, M. S., Almogren, A., & Alamri, A. (2017). A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography. IEEE Access, 5, 22313–22328.

    Article  Google Scholar 

  12. Hayajneh, T., Mohd, B. J., Imran, M., Almashaqbeh, G., & Vasilakos, A. V. (2016). Secure authentication for remote patient monitoring with wireless medical sensor networks. Sensors, 16(4), 424.

    Article  Google Scholar 

  13. He, D., & Wang, D. (2015). Robust biometrics-based authentication scheme for multiserver environment. IEEE Systems Journal, 9(3), 816–823.

    Article  Google Scholar 

  14. Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network & Computer Applications, 98, 27–42.

    Article  Google Scholar 

  15. Huang, C., Lu, R., & Choo, K. K. R. (2017). Vehicular fog computing: Architecture, use case, and security and forensic challenges. IEEE Communications Magazine, 55(11), 105–111.

    Article  Google Scholar 

  16. Joux, A. (2004). A one round protocol for tripartite diffie-hellman. Journal of Cryptology, 17(4), 263–276.

    Article  MathSciNet  Google Scholar 

  17. Khan, S., Parkinson, S., & Qin, Y. (2017). Fog computing security: A review of current applications and security solutions. Journal of Cloud Computing, 6(1), 19.

    Article  Google Scholar 

  18. Kwon, J. O., Jeong, I. R., Sakurai, K., & Dong, H. L. (2007). Efficient verifier-based password-authenticated key exchange in the three-party setting. Computer Standards & Interfaces, 29(5), 513–520.

    Article  Google Scholar 

  19. Lee, T. F., Liu, J. L., Sung, M. J., Yang, S. B., & Chen, C. M. (2009). Communication-efficient three-party protocols for authentication and key agreement. Computers & Mathematics with Applications, 58(4), 641–648.

    Article  MathSciNet  Google Scholar 

  20. Li, C. T., Wu, T. Y., Chen, C. L., Lee, C. C., & Chen, C. M. (2017). An efficient user authentication and user anonymity scheme with provably security for IoT-based medical care system. Sensors, 17(7), 1482.

    Article  Google Scholar 

  21. Liu, C. H., & Chung, Y. F. (2017). Secure user authentication scheme for wireless healthcare sensor networks. Computers & Electrical Engineering, 59, 250–261.

    Article  Google Scholar 

  22. Osanaiye, O. A., Chen, S., Zheng Yan, R. L., Choo, K. K. R., & Dlodlo, M. E. (2017). From cloud to fog computing: A review and a conceptual live vm migration framework. IEEE Access, 5, 8284–8300.

    Article  Google Scholar 

  23. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., et al. (2018). Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.

    Article  Google Scholar 

  24. Sookhak, M., Yu, R., He, Y., Talebian, H., Safa, N. S., Zhao, N., et al. (2017). Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing. IEEE Vehicular Technology Magazine, PP(99), 1–1.

    Google Scholar 

  25. Stojmenovic, I., & Wen, S. (2014, September). The fog computing paradigm: Scenarios and security issues. In Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on (pp. 1–8). IEEE.

  26. Stojmenovic, I., Wen, S., Huang, X., & Luan, H. (2016). An overview of fog computing and its security issues. Concurrency & Computation Practice & Experience, 28(10), 2991–3005.

    Article  Google Scholar 

  27. Turkanović, M., Brumen, B., & Hölbl, M. (2014). A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Networks, 20, 96–112.

    Article  Google Scholar 

  28. Wang, D., & Wang, P. (2014). On the anonymity of two-factor authentication schemes for wireless sensor networks: Attacks, principle and solutions. Computer Networks, 73, 41–57.

    Article  Google Scholar 

  29. Xie, Q., Wong, D. S., Wang, G., Tan, X., Chen, K., & Fang, L. (2017). Provably secure dynamic id-based anonymous two-factor authenticated key exchange protocol with extended security model. IEEE Transactions on Information Forensics and Security, 12(6), 1382–1392.

    Article  Google Scholar 

  30. Yeh, H. L., Chen, T. H., Liu, P. C., Kim, T. H., & Wei, H. W. (2011). A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors, 11(5), 4767–4779.

    Article  Google Scholar 

  31. Yi, S., Qin, Z., & Li, Q. (2015). Security and privacy issues of fog computing: A survey. In International conference on wireless algorithms, systems, and applications (pp. 685–695). Springer.

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China (Nos. 61501333, 61572379, U1536204) and the National High-Tech Research and Development Program of China (863 Program) (No. 2015AA016004) and in part by the Fundamental Research Funds for the Central Universities under Grant CZY18034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debiao He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., He, D., Kumar, N. et al. Authenticated key agreement scheme for fog-driven IoT healthcare system. Wireless Netw 25, 4737–4750 (2019). https://doi.org/10.1007/s11276-018-1759-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1759-3

Keywords

Navigation