Skip to main content

Advertisement

Log in

Energy consumption minimization and throughput improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cooperative spectrum sensing schemes proposed to solve the hidden terminal problem and mitigate multipath fading and shadowing effects, which enhance the sensing performance and throughput in cognitive radio (CR) neworks. However, increasing the number of cooperative SUs leads to more communication overhead, which will increase the energy consumption of the CR network. In this paper, a new scheme is proposed to solve the joint optimization problem of the sensing time, the detection threshold and the selection of the sensing and data transmitting secondary users (SUs) for improvement of the throughput and minimization of the energy consumption of the CR network under the constrains on the global probability of detection and global probability of false alarm. For these purposes, we find the optimal values of detection threshold and sensing time such that the detection constraints are satisfied. The convex optimization methods are used to determine the sensing and data transmitting SUs. The simulation results show that there exists the optimal detection threshold and sensing time for selected sensing and transmitting SUs that can improve the average throughput and minimize the energy consumption of the CR network in comparison to other schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  2. Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  3. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  4. Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  5. Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.

    Article  Google Scholar 

  6. Tang, L., Chen, Y., Hines, E. L., & Alouini, M.-S. (2011). Effect of primary user traffic on sensing-throughput tradeoff for cognitive radios. IEEE Transactions on Wireless Communications, 10(4), 1063–1068.

    Article  Google Scholar 

  7. Kim, S. J., & Giannakis, G. B. (2009). Rate-optimal and reduced-complexity sequential sensing algorithms for cognitive OFDM radios. EURASIP Journal on Advances in Signal Processing, 2009, 2.

    Article  MATH  Google Scholar 

  8. Zhao, C., & Kwak, K. (2010). Joint sensing time and power allocation in cooperatively cognitive networks. IEEE Communications Letters, 14(2), 163.

    Article  Google Scholar 

  9. Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE transactions on Wireless Communications, 9(3), 1128–1138.

    Article  Google Scholar 

  10. Paysarvi-Hoseini, P., & Beaulieu, N. C. (2011). Optimal wideband spectrum sensing framework for cognitive radio systems. IEEE Transactions on Signal Processing, 59(3), 1170–1182.

    Article  MathSciNet  MATH  Google Scholar 

  11. Scutari, G., & Pang, J.-S. (2013). Joint sensing and power allocation in nonconvex cognitive radio games: Nash equilibria and distributed algorithms. IEEE Transactions on Information Theory, 59(7), 4626–4661.

    Article  MathSciNet  MATH  Google Scholar 

  12. Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, R., Jiang, H., Guo, Q., & Zhang, Z. (2011). Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(2), 722–729.

    Article  Google Scholar 

  14. Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2009). How much time is needed for wideband spectrum sensing? IEEE Transactions on Wireless Communications, 8(11), 5466.

    Article  Google Scholar 

  15. Stotas, S., & Nallanathan, A. (2011). Optimal sensing time and power allocation in multiband cognitive radio networks. IEEE Transactions on Communications, 59(1), 226–235.

    Article  Google Scholar 

  16. Hu, H., Zhang, H., & Yu, H. (2014). Throughput-delay trade-off for cognitive radio networks: A convex optimization perspective. Paper presented at the abstract and applied analysis.

  17. Yu, H., Tang, W., & Li, S. (2014). Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection. Science China Information Sciences, 57(4), 1–8. https://doi.org/10.1007/s11432-013-4813-x.

    Article  Google Scholar 

  18. Hamza, D., & Aïssa, S. (2014). Enhanced primary and secondary performance through cognitive relaying and leveraging primary feedback. IEEE Transactions on Vehicular Technology, 63(5), 2236–2247.

    Article  Google Scholar 

  19. Xie, S., Liu, Y., Zhang, Y., & Yu, R. (2010). A parallel cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(8), 4079–4092.

    Article  Google Scholar 

  20. Moghimi, F., Mallik, R. K., & Schober, R. (2012). Sensing time and power optimization in MIMO cognitive radio networks. IEEE Transactions on Wireless Communications, 11(9), 3398–3408.

    Article  Google Scholar 

  21. Liu, X., & Tan, X. (2014). Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. International Journal of Communication Systems, 27(5), 705–720.

    Article  Google Scholar 

  22. Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access, 6, 199–208.

    Article  Google Scholar 

  23. Chengyu, W., Chen, H., & Lingge, J. (2013). Spectrum handoff scheme based on recommended channel sensing sequence. China Communications, 10(8), 18–26.

    Article  Google Scholar 

  24. Liu, X., Li, F., & Lu, W. (2016). A novel spectrum handoff-based sensing-throughput tradeoff scheme in cognitive radio. China Communications, 13(12), 59–68.

    Article  Google Scholar 

  25. Elmahdy, A. M., El-Keyi, A., ElBatt, T., & Seddik, K. G. (2017). Optimizing cooperative cognitive radio networks performance with primary QoS provisioning. IEEE Transactions on Communications, 65(4), 1451–1463.

    Article  Google Scholar 

  26. Ewaisha, A. E., & Tepedelenlioğlu, C. (2016). Throughput optimization in multichannel cognitive radios with hard-deadline constraints. IEEE Transactions on Vehicular Technology, 65(4), 2355–2368.

    Article  Google Scholar 

  27. Peh, E., & Liang, Y.-C. (2007). Optimization for cooperative sensing in cognitive radio networks. Paper presented at the wireless communications and networking conference, 2007. WCNC 2007. IEEE.

  28. Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors Journal, 11(3), 565–573.

    Article  Google Scholar 

  29. Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2013). A novel sensing nodes and decision node selection method for energy efficiency of cooperative spectrum sensing in cognitive sensor networks. IEEE Sensors Journal, 13(5), 1610–1621.

    Article  Google Scholar 

  30. Eryigit, S., Bayhan, S., & Tugcu, T. (2013). Energy-efficient multichannel cooperative sensing scheduling with heterogeneous channel conditions for cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(6), 2690–2699.

    Article  Google Scholar 

  31. Monemian, M., & Mahdavi, M. (2014). Analysis of a new energy-based sensor selection method for cooperative spectrum sensing in cognitive radio networks. IEEE Sensors Journal, 14(9), 3021–3032.

    Article  Google Scholar 

  32. Maleki, S., Leus, G., Chatzinotas, S., & Ottersten, B. (2015). To AND or To OR: on energy-efficient distributed spectrum sensing with combined censoring and sleeping. IEEE Transactions on Wireless Communications, 14(8), 4508–4521.

    Article  Google Scholar 

  33. Ebrahimzadeh, A., Najimi, M., Andargoli, S. M. H., & Fallahi, A. (2015). Sensor selection and optimal energy detection threshold for efficient cooperative spectrum sensing. IEEE Transactions on Vehicular Technology, 64(4), 1565–1577.

    Article  Google Scholar 

  34. Xu, X., Bao, J., Cao, H., Yao, Y.-D., & Hu, S. (2016). Energy-efficiency-based optimal relay selection scheme with a BER constraint in cooperative cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(1), 191–203.

    Article  Google Scholar 

  35. Monemian, M., Mahdavi, M., & Omidi, M. J. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829–1841.

    Article  Google Scholar 

  36. Hojjati, S. H., Ebrahimzadeh, A., Andargoli, S. M. H., & Najimi, M. (2017). Energy efficient cooperative spectrum sensing in wireless multi-antenna sensor network. Wireless Networks, 23(2), 567–578.

    Article  Google Scholar 

  37. Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking, 1(1), 29–39.

    Article  Google Scholar 

  38. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadeghian Kerdabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghian Kerdabadi, M., Ghazizadeh, R., Farrokhi, H. et al. Energy consumption minimization and throughput improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection. Wireless Netw 25, 2065–2079 (2019). https://doi.org/10.1007/s11276-018-1797-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1797-x

Keywords

Navigation