Skip to main content
Log in

Mono-bit millimeter-wave channel estimation: Bayesian and adaptive quantization frameworks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To achieve a more reasonable cost, employment of a mono-bit quantization structure is essential in wide bandwidth millimeter-wave communications (mmW). However, in mmW channel estimation, one of the critical challenges of mono-bit quantization in each branch of the antenna is the loss of data amplitude. The latest researches offer several approaches to estimate the channel in mono-bit single and multiple antenna structures. Such methods not consider the recovery of channel amplitude and consequently are limited to finding direction. Moreover, they do not provide sparsity into account. Thus, two new schemes are introduced based on a non-adaptive Bayesian algorithm and adaptive sigma–delta modulation (SDM) to tackle these issues. In both methods, we exploit the sparsity of mmWC channel in the angle domain. To extract the sparse-based Laplacian density in case that the sparsity level is unknown, we propose a Bayesian algorithm which employs a hierarchical chain composed of Gaussian and exponential prior. Furthermore, in case that the sparsity level of an application is known or can be estimated, the adaptive mono-bit quantization schemes is proposed which retrieves the amplitude of the sparse channel by the aid of SDM and CS tools. Simulation results show that the adaptive mono-bit estimator outperforms the non-adaptive Bayesian approach comparing the mean square error as an index. Also, the proposed adaptive method, especially when a sufficient number of one-bit measurements are available, can asymptotically converge into optimum full-bit observations with lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine,53, 168–178.

    Article  Google Scholar 

  2. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52, 74–80.

    Article  Google Scholar 

  3. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation,61, 1850–1859.

    Article  Google Scholar 

  4. Walden, R. H. (1999). Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,17, 539–550.

    Article  Google Scholar 

  5. Murmann, B. (2011). ADC performance survey 1997–2011. http://www.stanford.edu/~murmann/adcsurvey.html.

  6. El Ayach, O., Rajagopal, S., Abu-Surra, S., Zhouyue, P., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications,13, 1499–1513.

    Article  Google Scholar 

  7. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing,8, 831–846.

    Article  Google Scholar 

  8. Ghauch, H., Bengtsson, M., Kim, T., & Skoglund, M. (2015). Subspace estimation and decomposition for hybrid analog–digital millimetre-wave MIMO systems. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 395–399).

  9. Schniter, P., & Sayeed, A. (2014). Channel estimation and precoder design for millimeter-wave communications: The sparse way. In 48th Asilomar conference on signals, systems and computers (pp. 273–277).

  10. Zhang, T.-C., Wen, C.-K., Jin, S., & Jiang, T. (2016). Mixed-ADC massive MIMO detectors: Performance analysis and design optimization. IEEE Transactions on Wireless Communications,15, 7738–7752.

    Article  Google Scholar 

  11. Jacobsson, S., Durisi, G., Coldrey, M., Gustavsson, U., & Studer, C. (2015). “One-bit massive MIMO: Channel estimation and high-order modulations,” in Communication Workshop (ICCW). IEEE International Conference on,2015, 1304–1309.

    Google Scholar 

  12. Risi, C., Persson, D., & Larsson, E. G. (2014). Massive MIMO with 1-bit ADC. arXiv preprint arXiv:1404.7736.

  13. Zhang, J., Dai, L., Sun, S., & Wang, Z. (2016). On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Communications Letters,20, 842–845.

    Article  Google Scholar 

  14. Fan, L., Jin, S., Wen, C.-K., & Zhang, H. (2015). Uplink achievable rate for massive MIMO systems with low-resolution ADC. IEEE Communications Letters,19, 2186–2189.

    Article  Google Scholar 

  15. Li, Y., Tao, C., Seco-Granados, G., Mezghani, A., Swindlehurst, A. L., & Liu, L. (2016). Channel estimation and performance analysis of one-bit massive MIMO systems. arXiv preprint arXiv:1609.07427.

  16. Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2016). Channel estimation in massive MIMO systems using 1-bit quantization. In IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–6).

  17. Yin, H., Wang, Z., Ke, L., & Wang, J. (2010). Monobit digital receivers: Design, performance, and application to impulse radio. IEEE Transactions on Communications,58, 1695–1704.

    Article  Google Scholar 

  18. Mo, J., Schniter, P., Prelcic, N. G., & Heath, R. W. (2014). Channel estimation in millimeter wave MIMO systems with one-bit quantization. In 48th Asilomar conference on signals, systems and computers (pp. 957–961).

  19. Rusu, C., Mendez-Rial, R., Gonzalez-Prelcic, N., & Heath, R. W. (2015) Adaptive one-bit compressive sensing with application to low-precision receivers at mmWave. In IEEE global communications conference (GLOBECOM) (pp. 1–6).

  20. Mo, J., Schniter, P., & Heath, R. W. Jr. (2016). Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs. arXiv preprint arXiv:1610.02735.

  21. Jacques, L., Laska, J. N., Boufounos, P. T., & Baraniuk, R. G. (2013). Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions on Information Theory,59, 2082–2102.

    Article  MathSciNet  Google Scholar 

  22. Xu, Y., Kabashima, Y., & Zdeborová, L. (2014). Bayesian signal reconstruction for 1-bit compressed sensing. Journal of Statistical Mechanics: Theory and Experiment,2014, P11015.

    Article  MathSciNet  Google Scholar 

  23. Yan, M., Yang, Y., & Osher, S. (2012). Robust 1-bit compressive sensing using adaptive outlier pursuit. IEEE Transactions on Signal Processing,60, 3868–3875.

    Article  MathSciNet  Google Scholar 

  24. Stöckle, C., Munir, J., Mezghani, A., & Nossek, J. A. (2015). 1-Bit direction of arrival estimation based on compressed sensing. In IEEE 16th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 246–250).

  25. Stein, M., Barbé, K., & Nossek, J. A. (2016). DOA parameter estimation with 1-bit quantization-bounds, methods and the exponential replacement. arXiv preprint arXiv:1602.05462.

  26. Ivrlac, M. T., & Nossek, J. A. (2007). On MIMO channel estimation with single-bit signal-quantization. In ITG smart antenna workshop.

  27. Pedersen, N. L., Manchón, C. N., Badiu, M.-A., Shutin, D., & Fleury, B. H. (2015). Sparse estimation using Bayesian hierarchical prior modeling for real and complex linear models. Signal Processing,115, 94–109.

    Article  Google Scholar 

  28. Knudson, K., Saab, R., & Ward, R. (2016). One-bit compressive sensing with norm estimation. IEEE Transactions on Information Theory,62, 2748–2758.

    Article  MathSciNet  Google Scholar 

  29. Baraniuk, R., Foucart, S., Needell, D., Plan, Y., & Wootters, M. (2014). Exponential decay of reconstruction error from binary measurements of sparse signals. arXiv preprint arXiv:1407.8246.

  30. Saab, R., Wang, R., & Yılmaz, Ö. (2018). Quantization of compressive samples with stable and robust recovery. Applied and Computational Harmonic Analysis,44(1), 123–143.

    Article  MathSciNet  Google Scholar 

  31. Boufounos, P., & Baraniuk, R. G. (2007). Sigma delta quantization for compressive sensing. In Optical engineering + applications (pp. 670104–670104-13).

  32. Chou, E., Güntürk, C. S., Krahmer, F., Saab, R., & Yılmaz, Ö. (2015). Noise-shaping quantization methods for frame-based and compressive sampling systems. In G. Pfander (Ed.), Sampling theory, a renaissance (pp. 157–184). Berlin: Springer.

    Chapter  Google Scholar 

  33. Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  34. Yu, X., Shen, J.-C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing,10, 485–500.

    Article  Google Scholar 

  35. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications,32, 1164–1179.

    Article  Google Scholar 

  36. Hansen, R. C. (2009). Phased array antennas (Vol. 213). New York: Wiley.

    Book  Google Scholar 

  37. Schniter, P., & Sayeed, A. (2004). A sparseness-preserving virtual MIMO channel model. In Proceedings of 38th annual conference information science and systems (CISS’04) (pp. 36–41).

  38. Hong, Z., Liu, K., Heath, R. W., & Sayeed, A. M. (2003). Spatial multiplexing in correlated fading via the virtual channel representation. IEEE Journal on Selected Areas in Communications,21, 856–866.

    Article  Google Scholar 

  39. Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Technical University of Denmark,7, 15.

    Google Scholar 

  40. Blanchard, J. D., Cermak, M., Hanle, D., & Jing, Y. (2014). Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing,62, 1694–1704.

    Article  MathSciNet  Google Scholar 

  41. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The elements of statistical learning (pp. 485–585). Berlin: Springer.

  42. Figueiredo, M. (2002). Adaptive sparseness using Jeffreys prior. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (pp. 697–704).

  43. Yu, Y. (2012). Monotonically overrelaxed EM algorithms. Journal of Computational and Graphical Statistics, 21(2), 518–537.

    Article  MathSciNet  Google Scholar 

  44. Dellaert, F. (2002). The expectation maximization algorithm.

  45. Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2010). Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing,19, 53–63.

    Article  MathSciNet  Google Scholar 

  46. Shutin, D., Buchgraber, T., Kulkarni, S. R., & Poor, H. V. (2011). Fast adaptive variational sparse Bayesian learning with automatic relevance determination. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2180–2183).

  47. Fang, J., & Li, H. (2010). Adaptive distributed estimation of signal power from one-bit quantized data. IEEE Transactions on Aerospace and Electronic Systems,46, 1893–1905.

    Article  Google Scholar 

  48. Saab, R., & Wang, R. (2016). From compressed sensing to compressed bit-streams: practical encoders, tractable decoders. arXiv preprint arXiv:1604.00700.

  49. Ribeiro, A., & Giannakis, G. B. (2006). Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case. IEEE Transactions on Signal Processing,54, 1131–1143.

    Article  Google Scholar 

  50. Boufounos, P. T., Jacques, L., Krahmer, F., & Saab, R. (2015). Quantization and compressive sensing. In H. Boche, R. Calderbank, G. Kutyniok, & J. Vybíral (Eds.), Compressed sensing and its applications (pp. 193–237). Berlin: Springer.

    Chapter  Google Scholar 

  51. Tropp, J. A., Dhillon, I. S., Heath, R. W., & Strohmer, T. (2005). Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory,51, 188–209.

    Article  MathSciNet  Google Scholar 

  52. Laska, J. N., Wen, Z., Yin, W., & Baraniuk, R. G. (2011). Trust, but verify: Fast and accurate signal recovery from 1-bit compressive measurements. IEEE Transactions on Signal Processing,59, 5289–5301.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shakhsi Dastgahian.

Appendices

Appendix 1

We know that

$$E\left[ {{\text{z}}_{i} |{\text{r}}_{i} = 1,{\mathbf{h}}_{v}^{(t)} } \right] = \frac{{\int\limits_{0}^{\infty } {z_{i} \exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } }}{{\int\limits_{0}^{\infty } {\exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } }}$$
(54)

and

$$E\left[ {{\text{z}}_{i} |{\text{r}}_{i} = - 1,{\mathbf{h}}_{v}^{(t)} } \right] = \frac{{\int\limits_{ - \infty }^{0} {z_{i} \exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } }}{{\int\limits_{ - \infty }^{0} {\exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } }}$$
(55)

which (55) can be computed in closed-form. From nominator of (54) we have

$$\begin{aligned} & \int\limits_{0}^{\infty } {z_{i} \exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } \\ & \quad = \int\limits_{0}^{\infty } {(z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} + {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )\exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } \\ & \quad = \int\limits_{0}^{\infty } {(z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )\exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} ) + {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} \exp ( - (z_{i} - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )dz_{i} } \\ & \quad = \int\limits_{{ - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} }}^{\infty } {s\exp ( - (s)^{2} /2\sigma^{2} )ds_{i} + {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} \int\limits_{{ - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} }}^{\infty } {\exp ( - (s)^{2} /2\sigma^{2} )ds_{i} } } \\ & \quad = - \sigma^{2} \exp ( - (s)^{2} /2\sigma^{2} )|_{{ - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} }}^{\infty } + {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} \int\limits_{{ - {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} }}^{\infty } {\exp ( - (s)^{2} /2\sigma^{2} )ds_{i} } \\ & \quad = \sigma^{2} \exp ( - ({\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} ) + {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} \sqrt {2\pi \sigma^{2} } \varPhi ({\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} ) \\ \end{aligned}$$
(56)

The normal pdf and normal CDF in above are defined as \({\rm N}({\mathbf{W}}_{i}^{H} {\hat{\mathbf{h}}}_{v}^{(t)} |0,\sigma^{2} ) \triangleq {1 \mathord{\left/ {\vphantom {1 {\sqrt {2\pi \sigma^{2} } }}} \right. \kern-0pt} {\sqrt {2\pi \sigma^{2} } }}\exp - ({\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} )^{2} /2\sigma^{2} )\) and \(\varPhi ({\mathbf{W}}_{i}^{H} {\hat{\mathbf{h}}}_{v}^{(t)} ) \triangleq \frac{1}{{\sqrt {2\pi \sigma^{2} } }}\int\limits_{{ - {\mathbf{W}}_{i}^{H} {\hat{\mathbf{h}}}_{v}^{(t)} }}^{\infty } {\exp ( - \frac{{(s)^{2} }}{{2\sigma^{2} }}} )ds\) respectively. With a few manipulations, we have

$$E\left[ {{\text{z}}_{i} |{\text{r}}_{i} ,{\mathbf{h}}_{v}^{(t)} } \right] = {\mathbf{W}}_{i}^{{^{H} }} {\mathbf{h}}_{v}^{(t)} + {\text{r}}_{i} \sigma^{2} \frac{{{\rm N}({\mathbf{W}}_{i}^{H} {\hat{\mathbf{h}}}_{v}^{(t)} |0,\sigma^{2} )}}{{\varPhi ({\text{r}}_{i} {\mathbf{W}}_{i}^{H} {\hat{\mathbf{h}}}_{v}^{(t)} )}}$$
(57)

Also, the expectation of \(\alpha_{i}^{ - 1}\) is obtained by simple manipulation as follows

$$\begin{aligned} \vartheta_{i} \equiv E\left[ {\alpha_{i}^{ - 1} |{\mathbf{r}},{\hat{\mathbf{h}}}_{v}^{(t)} } \right] & = \frac{{\int\limits_{0}^{\infty } {\alpha_{i}^{ - 1} p({\hat{\mathbf{h}}}_{i,v}^{(t)} |\alpha_{i} )p(\alpha_{i} )d\alpha_{i} } }}{{\int\limits_{0}^{\infty } {p({\hat{\mathbf{h}}}_{i,v}^{(t)} |\alpha_{i} )p(\alpha_{i} )d\alpha_{i} } }} = \frac{{\int\limits_{0}^{\infty } {\alpha_{i}^{ - 1} \frac{1}{{\sqrt {2\pi \alpha_{i} } }}\exp ( - {\raise0.7ex\hbox{${{\text{h}}_{i,v}^{2} }$} \!\mathord{\left/ {\vphantom {{{\text{h}}_{i,v}^{2} } {2\alpha_{i} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${2\alpha_{i} }$}})\frac{1}{{\alpha_{i} }}d\alpha_{i} } }}{{\int\limits_{0}^{\infty } {\frac{1}{{\sqrt {2\pi \alpha_{i} } }}\exp ( - {\raise0.7ex\hbox{${{\text{h}}_{i,v}^{2} }$} \!\mathord{\left/ {\vphantom {{{\text{h}}_{i,v}^{2} } {2\alpha_{i} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${2\alpha_{i} }$}})\frac{1}{{\alpha_{i} }}d\alpha_{i} } }} \\ & = \frac{{4\int\limits_{0}^{\infty } {\frac{{t^{2} }}{{h_{i,v}^{3} }}\exp ( - t^{2} )dt} }}{{2\int\limits_{0}^{\infty } {\exp ( - h_{i,v}^{2} t^{2} /2)dt} }} = \frac{{\frac{4}{{h_{i,v}^{3} }}\sqrt {\frac{\pi }{2}} }}{{\sqrt {\frac{\pi }{2}} \frac{1}{{h_{i,v} }}}} = \frac{1}{{h_{i,v}^{2} }} \\ \end{aligned}$$
(58)

Appendix 2

The normal CDF is given by by

$$F_{1} (x) = \frac{1}{{\sigma \sqrt {2\pi } }}\int\limits_{ - \infty }^{x} {\exp ( - \frac{{t^{2} }}{{2\sigma^{2} }})} dt$$
(59)

For having the normal complementary CDF (CCDF), we use \(F_{1} ( - x)\). Thus, it can be obtained

$$F_{2} (x) = F_{1} ( - x) = \frac{1}{{\sigma \sqrt {2\pi } }}\int\limits_{ - \infty }^{ - x} {\exp ( - \frac{{t^{2} }}{{2\sigma^{2} }})} dt$$
(60)

Furthermore, the complementary error function is defined

$$erfc(x) \triangleq \frac{2}{\sqrt \pi }\int\limits_{x}^{\infty } {\exp ( - t^{2} )} dt$$
(61)

By changing the variable \(\frac{t}{\sigma \sqrt 2 }\) to \(t^{\prime }\) into the (60) and some manipulations, we can get the relation between \(erfc(.)\) and CCDF. We have,

$$F_{2} (x) = \frac{1}{2}erfc\left( {\frac{x}{\sigma \sqrt 2 }} \right)$$
(62)

By assumption of \(\sigma = 1\), the first and the second derivative are obtained from (60) as

$$F_{2}^{\prime } (x) \triangleq f(x) = - \frac{1}{{\sqrt {2\pi } }}\exp \left( { - \frac{{x^{2} }}{2}} \right),\quad {\text{F}}_{2}^{{\prime \prime }} (x) \triangleq f^{\prime}(x) = \frac{x}{{\sqrt {2\pi } }}\exp \left( { - \frac{{x^{2} }}{2}} \right)$$
(63)

In above, the first derivative is pdf. By considering (36) and (38) and defining of \({\varvec{\upvarepsilon}}_{n} = {\varvec{\uptau}}_{n} - {\varvec{\upomega}}_{k - 1}\), we have,

$$L^{\prime}_{MLQ} ({\varvec{\upomega}}_{k - 1} ) = \sum\limits_{n = 1}^{k - 1} { - \left( {\frac{{1 + {\mathbf{r}}_{n} }}{2}} \right)\frac{{f({\varvec{\upvarepsilon}}_{n} )}}{{F{}_{\zeta }({\varvec{\upvarepsilon}}_{n} )}} + } \left( {\frac{{1 - {\mathbf{r}}_{n} }}{2}} \right)\frac{{f({\varvec{\upvarepsilon}}_{n} )}}{{1 - F{}_{\zeta }({\varvec{\upvarepsilon}}_{n} )}}$$
(64)

And

$$L_{MLQ}^{{\prime \prime }} ({\varvec{\upomega}}_{k - 1} ) = \frac{{\partial^{2} L_{MAQ} }}{{\partial {\varvec{\upomega}}_{k - 1}^{2} }} = \sum\limits_{n = 1}^{k - 1} {\left( {\frac{{1 + {\mathbf{r}}_{n} }}{2}} \right)\left[ {\frac{{f^{\prime}({\varvec{\upvarepsilon}}_{n} )}}{{F{}_{\zeta }({\varvec{\upvarepsilon}}_{n} )}} - \frac{{f^{2} ({\varvec{\upvarepsilon}}_{n} )}}{{F_{\zeta }^{2} ({\varvec{\upvarepsilon}}_{n} )}}} \right] + } \left( {\frac{{1 - {\mathbf{r}}_{n} }}{2}} \right)\left[ {\frac{{ - f^{\prime } ({\varvec{\upvarepsilon}}_{n} )}}{{1 - F{}_{\zeta }({\varvec{\upvarepsilon}}_{n} )}} - \frac{{f^{2} ({\varvec{\upvarepsilon}}_{n} )}}{{(1 - F{}_{\zeta }({\varvec{\upvarepsilon}}_{n} ))^{2} }}} \right]$$
(65)

Appendix 3

From the mono-bit received data model (2) and the estimated channel, we know that

$${\hat{\mathbf{r}}}(k)=sign\left( {{\hat{\mathbf{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{\hat{H}\hat{P}}}_{\text{t,RF}} {\hat{\mathbf{P}}}_{\text{t,BB}} {\mathbf{s}}(k){\mathbf{ + \hat{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{n}}(k)} \right)$$
(66)

Replacing the estimated baseband precoder \({\hat{\mathbf{P}}}_{\text{t,BB}}\) (47) into (66), we obtain

$${\hat{\mathbf{r}}}(k)=sign\left( {{\hat{\mathbf{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{\hat{H}\hat{P}}}_{\text{t,RF}} \sqrt {\frac{{N_{s} }}{{trace\left\{ {\left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} } \right\}}}} {\hat{\mathbf{H}}}_{eff}^{H} \left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} {\mathbf{s}}(k){\mathbf{ + \hat{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{n}}(k)} \right)$$
(67)

Using the definition of \({\hat{\mathbf{H}}}_{eff} \equiv {\hat{\mathbf{C}}}_{r,RF}^{H} {\mathbf{\hat{H}\hat{P}}}_{t,RF}\) and some manipulations, we have

$${\hat{\mathbf{r}}}(k) = sign\left( {\sqrt {\frac{{N_{s} }}{{trace\left\{ {\left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} } \right\}}}} {\mathbf{s}}(k){\mathbf{ + \hat{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{n}}(k)} \right)$$
(68)

The relation (68) shows that the interference between multi streams is annihilated. Therefore, we have \(2N_{s}\) real mono-bit data at the receiver. The SNR in each branch of the antenna for real received data is obtained as

$$SNR = E\left[ {\left\| {\sqrt {\frac{{N_{s} }}{{trace\left\{ {\left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} } \right\}}}} {\mathbf{s}}(k)} \right\|^{2} } \right]/E\left[ {\left\| {{\hat{\mathbf{C}}}_{\text{r,RF}}^{\text{H}} {\mathbf{n}}(k)} \right\|^{2} } \right] = \frac{{P_{T} }}{{trace\left\{ {\left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} } \right\}\sigma_{n}^{2} }}$$
(69)

Maximizing SNR means the minimization of \(trace\left\{ {\left( {{\hat{\mathbf{H}}}_{eff} {\hat{\mathbf{H}}}_{eff}^{H} } \right)^{ - 1} } \right\}\) in (69). We utilize the singular value decomposition (SVD) over \({\hat{\mathbf{H}}}_{eff}\) as \({\hat{\mathbf{H}}}_{eff} = {\mathbf{\hat{U}\hat{\varGamma }\hat{V}}}^{H}\) that \({\hat{\mathbf{U}}}\) and \({\hat{\mathbf{V}}}\) are left and right singular vectors. Furthermore,\({\hat{\mathbf{\varGamma }}}\) is a diagonal matrix consist of singular values in descending order. Consequently, maximization of SNR results as,

$$\hbox{max} (SNR) = \hbox{min} (\lambda_{1}^{ - 2} + \lambda_{2}^{ - 2} + \cdots + \lambda_{{N_{s} }}^{ - 2} )$$
(70)

where \(\lambda_{i}\) is the ith entry of diagonal matrix \({\hat{\mathbf{\varGamma }}}\). Since \(\lambda_{1}\) to \(\lambda_{{N_{s} }}\) are the most significant singular values, The minimization term in (70) maximizes SNR certainly. Thus, it means that the best choice for \({\hat{\mathbf{P}}}_{\text{t,RF}}\) and \({\hat{\mathbf{C}}}_{\text{r,RF}}\) in term of \({\hat{\mathbf{H}}}_{eff} \equiv {\hat{\mathbf{C}}}_{r,RF}^{H} {\mathbf{\hat{H}\hat{P}}}_{t,RF}\) is \(N_{s}\) singular vectors from \({\hat{\mathbf{V}}}\) and \({\hat{\mathbf{U}}}\), respectively. This choice makes \(2N_{s}\) separated and parallel sub-channels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhsi Dastgahian, M., Khoshbin, H. Mono-bit millimeter-wave channel estimation: Bayesian and adaptive quantization frameworks. Wireless Netw 26, 307–324 (2020). https://doi.org/10.1007/s11276-018-1815-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1815-z

Keywords

Navigation