Skip to main content
Log in

D2D pervasive communication system with out-of-band control autonomous to 5G networks

Project and evaluation of a middleware for networking and content exchange to D2D communication without human interaction

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

D2D (device-to-device) communication is one of the developments of 5G networks (5th generation mobile networks) that reduce mobile traffic load, reduce energy consumption and effectively use the available electrical radio spectrum. An increase in the number of mobile devices might, in theory, promote D2D communications to 5G networks; however, in practice, the D2D communications technologies, such as Wi-Fi Ad-Hoc, Bluetooth and Wi-Fi Direct, are not available or require human interaction. To overcome these limitations, a middleware based on Wi-Fi infrastructure mode, which establishes connections and performs data exchange without human interaction, is presented. Practical proofs of the concept demonstrate that the middleware enables transparent D2D communications for 5G applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://github.com/Garrocho/Net-Opp.

  2. http://pandaboard.org/content/pandaboard-es.

  3. http://bwping.sourceforge.net.

References

  1. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18, 1617–1655.

    Article  Google Scholar 

  2. Palattella, M., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., et al. (2016). Internet of things in the 5G era: Enablers, architecture and business models. IEEE Journal on Selected Areas in Communications, 34, 510–527.

    Article  Google Scholar 

  3. Soldani, D., & Manzalini, A. (2015). Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Vehicular Technology Magazine, 10, 32–42.

    Article  Google Scholar 

  4. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication, 18, 64–84.

    Article  Google Scholar 

  5. Wang, Y., Wei, L., Vasilakos, A. V., & Jin, Q. (2017). Device-to-device based mobile social networking in proximity (msnp) on smartphones: Framework, challenges and prototype. Future Generation Computer Systems, 74, 241–253.

    Article  Google Scholar 

  6. Ho, Q. D., Tweed, D., & Le-Ngoc, T. (2017). IEEE 802.11/Wi-Fi medium access control: An overview. In Long term evolution in unlicensed bands. Springerbriefs in electrical and computer engineering. Cham: Springer.

  7. Zuo, J., Wang, Y., Jin, Q., & Ma, J. (2015). Hychat: A hybrid interactive chat system for mobile social networking in proximity. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity).

  8. Arnaboldi, V., Conti, M., & Delmastro, F. (2014). Cameo: A novel context-aware middleware for opportunistic mobile social networks. Pervasive and Mobile Computing, 11, 148–167.

    Article  Google Scholar 

  9. WPAN Task Group 1 (TG1). (2017). IEEE standard 802.15.1—part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPANS).

  10. El Alami, M., Benamar, N., Younis, M., & Shahin, A. A. (2017) A framework for hotspot support using Wi-Fi direct based device-to-device links. In 13th international wireless communications and mobile computing conference (IWCMC).

  11. Alliance, W.-F. (2016). Wi-fi peer-to-peer (p2p) technical specification, version 1.7, alliance technical committee p2p task group.

  12. Saha, D., & Mukherjee, A. (2003). Pervasive computing: A paradigm for the 21st century. Computer, 36, 25–31.

    Article  Google Scholar 

  13. Nordström, E., Rohner, C., & Gunningberg, P. (2014). Haggle: Opportunistic mobile content sharing using search. Computer Communications, 48, 121–132.

    Article  Google Scholar 

  14. Dubois, D. J., Bando, Y., Watanabe, K., & Holtzman, H. (2013). Shair: Extensible middleware for mobile peer-to-peer resource sharing. In Proceedings of the 2013 9th joint meeting on foundations of software engineering.

  15. Turkes, O., Scholten, H., & Havinga, P. J. (2016). Cocoon: A lightweight opportunistic networking middleware for community-oriented smart mobile applications. Computer Networks, 111, 93–108.

    Article  Google Scholar 

  16. Turkes, O., Scholten, H., & Havinga, P. J. (2016). Opportunistic beacon networks: Information dissemination via wireless network identifiers. In 2016 IEEE international conference on pervasive computing and communication workshops (PerCom workshops).

  17. Pavone, M. (2016). Autonomous mobility-on-demand systems for future urban mobility. In Autonomous driving, pp. 387–404.

    Google Scholar 

  18. Zhang, X., Yang, Z., Sun, W., Liu, Y., Tang, S., Xing, K., et al. (2016). Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys & Tutorials, 18, 54–67.

    Article  Google Scholar 

  19. Dahlman, E., Parkvall, S., & Skold, J. (2016). 4G, LTE-advanced Pro and the Road to 5G. Cambridge: Academic Press.

    Google Scholar 

  20. OpenSignal, I. (2010). Global state of mobile networks (February 2017).

  21. For Network, E. U. A., & (ENISA), I. S. (2017). Annual incident reports 2016. In Analysis of article 13a annual incident reports in the telecom sector.

  22. Gebhart, G., & Kohno, T. (2017) Internet censorship in Thailand: User practices and potential threats. In 2017 IEEE European symposium on security and privacy (EuroS&P).

  23. Neokosmidis, I., Rokkas, T., Parker, M. C., Koczian, G., Walker, S. D., Siddiqui, M. S., et al. (2017). Assessment of socio-techno-economic factors affecting the market adoption and evolution of 5G networks: Evidence from the 5G-PPP CHARIMA project. Telematics and Informatics, 34, 572–589.

    Article  Google Scholar 

  24. Index, C. V. N. (2016). Global mobile data traffic forecast update, 2015–2020 white paper. link: http://goo. gl/ylTuVx.

  25. Akyildiz, I. F., Nie, S., Lin, S.-C., & Chandrasekaran, M. (2016). 5G roadmap: 10 Key enabling technologies. Computer Networks, 106, 17–48.

    Article  Google Scholar 

  26. Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: State of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16.

    Article  Google Scholar 

  27. Poularakis, K., Iosifidis, G., Sourlas, V., & Tassiulas, L. (2016). Exploiting caching and multicast for 5G wireless networks. IEEE Transactions on Wireless Communications, 15, 2995–3007.

    Article  Google Scholar 

  28. Buzzi, S., Chih-Lin, I., Klein, T. E., Poor, H. V., Yang, C., & Zappone, A. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34(4), 697–709.

    Article  Google Scholar 

  29. Wang, T., Li, P., Wang, X., Wang, Y., Guo, T., & Cao, Y. (2017). A comprehensive survey on mobile data offloading in heterogeneous network. Wireless Networks, pp. 1–12.

  30. Saifullah, A., Xu, Y., Lu, C., & Chen, Y. (2015). End-to-end communication delay analysis in industrial wireless networks. IEEE Transactions on Computers, 64, 1361–1374.

    Article  MathSciNet  Google Scholar 

  31. Yilmaz, O. N., Li, Z., Valkealahti, K., Uusitalo, M. A., Moisio, M., Lundén, P., & Wijting, C. (2014). Smart mobility management for D2D communications in 5G networks. In 2014 IEEE wireless communications and networking conference workshops.

  32. Aydin, O., Jorswieck, E. A., Aziz, D., & Zappone, A. (2017). Energy-spectral efficiency trade-offs in 5G multi-operator networks with heterogeneous constraints. IEEE Transactions on Wireless Communications, 16, 5869–5881.

    Article  Google Scholar 

  33. Biswash, S. K., Ziviani, A., Jain, R., Lin, J.-C., & Rodrigues, J. J. (2017). Device-to-device communication in 5G networks. Mobile Networks and Applications, 22, 995–997.

    Article  Google Scholar 

  34. Ding, G., Wang, J., Wu, Q., Yao, Y.-D., Song, F., & Tsiftsis, T. A. (2016). Cellular-base-station-assisted device-to-device communications in TV white space. IEEE Journal on Selected Areas in Communications, 34, 107–121.

    Article  Google Scholar 

  35. Asadi, A., & Mancuso, V. (2017). Network-assisted outband D2D-clustering in 5G cellular networks: Theory and practice. IEEE Transactions on Mobile Computing, 16, 2246–2259.

    Article  Google Scholar 

  36. Meshgi, H., Zhao, D., & Zheng, R. (2017). Optimal resource allocation in multicast device-to-device communications underlaying LTE networks. IEEE Transactions on Vehicular Technology, 66, 8357–8371.

    Article  Google Scholar 

  37. Karakus, C., & Diggavi, S. (2017). Enhancing multiuser MIMO through opportunistic D2D cooperation. IEEE Transactions on Wireless Communications, 16, 5616–5629.

    Article  Google Scholar 

  38. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104, 1727–1765.

    Article  Google Scholar 

  39. Constantinescu, M., Onur, E., Durmus, Y., Nikou, S., De Reuver, M., Bouwman, H., et al. (2014). Mobile tethering: Overview, perspectives and challengess. Info, 16, 40–53.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Brazilian research agencies (CNPq) and (Capes), the Research Foundation of the State of Minas Gerais (FAPEMIG), and the Federal University of Ouro Preto (UFOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. B. Garrocho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrocho, C.T.B., da Silva, M.J. & Oliveira, R.A.R. D2D pervasive communication system with out-of-band control autonomous to 5G networks. Wireless Netw 26, 373–386 (2020). https://doi.org/10.1007/s11276-018-1820-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1820-2

Keywords

Navigation