Skip to main content

Advertisement

Log in

An efficient scheme for trajectory design of mobile chargers in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In large scale wireless rechargeable sensor networks, the limited battery capacity of sensors and finite network lifetime are widely regarded as performance bottlenecks. Recent findings in the domain of wireless energy transfer (WET) technologies have inspired the researchers to solve the energy and lifetime related problems. In the WET techniques, a wireless charging vehicle (WCV) carries a wireless power charger to transfer its energy to the sensor nodes over the air. In this work, we aim to design optimal trajectories for a given number of WCVs based on the routing loads of sensor nodes to make network operational for a longer time. We propose an efficient scheme for energy replenishment of sensor nodes which targets to improve overall charging performance. We perform extensive simulations on the proposed scheme to address the merits and validate its effectiveness over the existing HILBERT and S-CURVES(ad) schemes. Moreover, we evaluate our results through statistical analysis of variance test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chatterjee, S., Carrera, C., & Lynch, L. A. (1996). Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3), 490–510.

    Article  Google Scholar 

  2. Dai, H., Wu, X., Chen, G., Xu, L., & Lin, S. (2014). Minimizing the number of mobile chargers for large-scale wireless rechargeable sensor networks. Computer Communications, 46, 54–65.

    Article  Google Scholar 

  3. Han, G., Qian, A., Liu, L., Jiang, J., & Zhu, C. (2015). Impacts of traveling paths on energy provisioning for industrial wireless rechargeable sensor networks. Microprocessors and Microsystems, 39(8), 1271–1278.

    Article  Google Scholar 

  4. He, L., Gu, Y., Pan, J., & Zhu, T. (2013a). On-demand charging in wireless sensor networks: Theories and applications. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (pp. 28–36). IEEE.

  5. He, L., Kong, L., Gu, Y., Pan, J., & Zhu, T. (2015). Evaluating th eon-demand mobile charging in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(9), 1861–1875.

    Article  Google Scholar 

  6. He, S., Chen, J., Jiang, F., Yau, D. K., Xing, G., & Sun, Y. (2013b). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.

    Article  Google Scholar 

  7. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Ph.D. thesis, Massachusetts Institute of Technology.

  8. Jiang, F., He, S., Cheng, P., & Chen, J. (2011). On optimal scheduling in wireless rechargeable sensor networks for stochastic event capture. In 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 69–74). IEEE.

  9. Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.

    Article  Google Scholar 

  10. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.

    Article  MathSciNet  Google Scholar 

  11. Kurs, A., Moffatt, R., & Soljačić, M. (2010). Simultaneous mid-range power transfer to multiple devices. Applied Physics Letters, 96(4), 044102.

    Article  Google Scholar 

  12. Lin, C., Xue, B., Wang, Z., Han, D., Deng, J., & Wu, G. (2015). DWDP: A double warning thresholds with double preemptive scheduling scheme for wireless rechargeable sensor networks. In 2015 IEEE 7th international symposium on cyberspace safety and security (CSS), 2015 IEEE 12th international conference on embedded software and systems (ICESS), 2015 IEEE 17th international conference on high performance computing and communications (HPCC) (pp. 503–508). IEEE.

  13. Lin, C., Wang, Z., Han, D., Wu, Y., Yu, C. W., & Wu, G. (2016a). TADP: Enabling temporal and distantial priority scheduling for on-demand charging architecture in wireless rechargeable sensor networks. Journal of Systems Architecture, 70, 26–38.

    Article  Google Scholar 

  14. Lin, C., Wu, G., Obaidat, M. S., & Yu, C. W. (2016b). Clustering and splitting charging algorithms for large scaled wireless rechargeable sensor networks. Journal of Systems and Software, 113, 381–394.

    Article  Google Scholar 

  15. Lin, C., Wu, Y., Liu, Z., Obaidat, M. S., Yu, C. W., & Wu, G. (2016c). Gtcharge: A game theoretical collaborative charging scheme for wireless rechargeable sensor networks. Journal of Systems and Software, 121, 88–104.

    Article  Google Scholar 

  16. Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations Research, 21(2), 498–516.

    Article  MathSciNet  Google Scholar 

  17. Madhja, A., Nikoletseas, S., & Raptis, T. P. (2015). Distributed wireless power transfer in sensor networks with multiple mobile chargers. Computer Networks, 80, 89–108.

    Article  Google Scholar 

  18. Madhja, A., Nikoletseas, S., & Raptis, T. P. (2016). Hierarchical, collaborative wireless energy transfer in sensor networks with multiple mobile chargers. Computer Networks, 97, 98–112.

    Article  Google Scholar 

  19. Meninger, S., Mur-Miranda, J. O., Amirtharajah, R., Chandrakasan, A., & Lang, J. H. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.

    Article  Google Scholar 

  20. Muller, K. E., & Fetterman, B. A. (2002). Regression and ANOVA: An integrated approach using SAS software. Cary: SAS Institute.

    MATH  Google Scholar 

  21. Park, G., Rosing, T., Todd, M. D., Farrar, C. R., & Hodgkiss, W. (2008). Energy harvesting for structural health monitoring sensor networks. Journal of Infrastructure Systems, 14(1), 64–79.

    Article  Google Scholar 

  22. Shi, Y., Xie, L., Hou, Y. T., & Sherali, H. D. (2011). On renewable sensor networks with wireless energy transfer. In INFOCOM, 2011 proceedings IEEE (pp. 1350–1358). IEEE.

  23. Wang, C., Li, J., Ye, F., & Yang, Y. (2013). Multi-vehicle coordination for wireless energy replenishment in sensor networks. In 2013 IEEE 27th international symposium on parallel & distributed processing (IPDPS) (pp. 1101–1111). IEEE.

  24. Wu, J. (2014). Collaborative mobile charging and coverage. Journal of Computer Science and Technology, 29(4), 550–561.

    Article  Google Scholar 

  25. Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2012a). On renewable sensor networks with wireless energy transfer: The multi-node case. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 10–18). IEEE.

  26. Xie, L., Shi, Y., Hou, Y. T., & Sherali, H. D. (2012b). Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Transactions on Networking (TON), 20(6), 1748–1761.

    Article  Google Scholar 

  27. Xie, L., Shi, Y., Hou, Y. T., & Lou, A. (2013a). Wireless power transfer and applications to sensor networks. IEEE Wireless Communications, 20(4), 140–145.

    Article  Google Scholar 

  28. Xie, L., Shi, Y., Hou, Y. T., Lou, W., & Sherali, H. D. (2013b). On traveling path and related problems for a mobile station in a rechargeable sensor network. In Proceedings of the fourteenth ACM international symposium on mobile ad hoc networking and computing (pp. 109–118). ACM.

  29. Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff S. F. (2013c). Bundling mobile base station and wireless energy transfer: Modeling and optimization. In INFOCOM, 2013 proceedings IEEE (pp. 1636–1644). IEEE.

  30. Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., & Midkiff, S. F. (2015a). Multi-node wireless energy charging in sensor networks. IEEE/ACM Transactions on Networking, 23(2), 437–450.

    Article  Google Scholar 

  31. Xie, L., Shi, Y., Hou, Y. T., Lou, W., Sherali, H. D., Zhou, H., et al. (2015b). A mobile platform for wireless charging and data collection in sensor networks. IEEE Journal on Selected Areas in Communications, 33(8), 1521–1533.

    Google Scholar 

  32. Xu, W., Liang, W., Ren, X., & Lin, X. (2014). On-demand energy replenishment for sensor networks via wireless energy transfer. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC) (pp. 1269–1273). IEEE.

  33. Yang, Y., & Wang, C. (2015). Wireless rechargeable sensor networks. Berlin: Springer.

    Book  Google Scholar 

  34. Zhang, S., Wu, J., & Lu, S. (2012). Collaborative mobile charging for sensor networks. In 2012 IEEE 9th international conference on mobile ad-hoc and sensor systems (MASS 2012) (pp. 84–92). IEEE.

  35. Zhang, S., Wu, J., & Lu, S. (2015). Collaborative mobile charging. IEEE Transactions on Computers, 64(3), 654–667.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, A., Nitesh, K. & Jana, P.K. An efficient scheme for trajectory design of mobile chargers in wireless sensor networks. Wireless Netw 26, 897–912 (2020). https://doi.org/10.1007/s11276-018-1833-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1833-x

Keywords

Navigation