Skip to main content
Log in

VANETs QoS-based routing protocols based on multi-constrained ability to support ITS infotainment services

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad hoc networks (VANETs) present an intriguing platform for several applications on e.g., intelligent transportation system (ITS) and infotainment applications aspire to be the main pattern of communication among vehicles while travelling. This can significantly impact on the amount of data exchanged by vehicles, increasing the contention on communication links and thus, degrading the quality of service of these applications. So, discrimination of data becomes imperative and forwarding critical information on suitable routes becomes decisive. Hence, a quality of service (QoS)-driven mechanism is needed to handle and assign network resources according to the stringent application data traffic demands. But, VANETs high node mobility and frequent link failure, stuck a big challenge in implementing an effective policy to meet and enforce these QoS requirements. A promising way to tackle this issue is to enforce QoS at the network layer, since it is the crucial point in VANETs’ communication. So, over the years, many QoS-aware routing protocols were specifically conceived for VANETs. In this paper, we present a comprehensive survey of QoS-aware routing protocols in VANETs’ literature. We examined the protocols based on their ability to support ITS infotainment services, their multi-constraint path problem (MCP), protocol’s functionality and weakness, objectives and design challenges. This way, we outline future directions for VANETs QoS-aware protocol research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng, L., Viriyasitavat, W., Boban, M., & Tsai, H.-M. (2018). Comparison of radio frequency and visible light propagation channels for vehicular communications. IEEE Access,6, 2634–2644.

    Article  Google Scholar 

  2. Shah, S. A. A., Ahmed, E., Rodrigues, J. J. P. C., Ali, I., & Noor, R. M. (2018). Shapely value perspective on adapting transmit power for periodic vehicular communications. IEEE Transactions on Intelligent Transportation Systems,19, 977–986.

    Article  Google Scholar 

  3. Sugumar, R., Rengarajan, A., & Jayakumar, C. (2018). Trust based authentication technique for cluster based vehicular ad hoc networks (VANET). Wireless Networks,24, 373–382.

    Article  Google Scholar 

  4. Noor, R.M., Khokhar R. H., Sattari, M. R. J., Khorsandroo, S., Khamis, K., & Oche, M. (2012). Using VANET to support green vehicle communications for urban operation rescue. In Proceedings of IEEE international conference on ITST, Taipei, Taiwan (pp. 324–328).

  5. Oche, M., Noor, R. M., Al-Jawfi, A. S., Bimba, A. T, & Nasir, K. M. (2013). An automatic speed violation detection framework for VANETs. In Proceedings of IEEE international conference on RFID-TA, Johor Bahru, Malaysia (pp.1–6).

  6. Shah, S. A. A., Ahmed, E., Xia, F., Karim, A., Shiraz, M., & Noor, R. M. (2016). Adaptive beaconing approaches for vehicular ad hoc networks: A survey. IEEE Systems Journal,12, 1–15.

    Google Scholar 

  7. Oche, M., Noor, R. M., & Jalooli, A. (2015). Quality of service management for IPTV services support in VANETs: A performance evaluation study. Wireless Networks,21, 315–328.

    Article  Google Scholar 

  8. Oche, M., Noor, R. M., & Aghinya, J. I. (2015). Network centric QoS performance evaluation of IPTV transmission quality over VANETs. Computer Communications,61, 34–47.

    Article  Google Scholar 

  9. Zaimi, I., Houssaini, Z. S., Boushaba, A., Oumsis, M., & Aboutajdine, D. (2018). An evaluation of routing protocols for vehicular ad-hoc network considering the video stream. Wireless Personal Communications,98, 945–981.

    Article  Google Scholar 

  10. Darwish, T. S. J., & Bakar, K. A. (2018). Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues. IEEE Access,6, 15679–15701.

    Article  Google Scholar 

  11. Kamouch, A., Chaoub, A., & Guennoun, Z. (2018). Mobile big data in vehicular networks: The road to internet of vehicles. In G. Skourletopoulos, G. Mastorakis, C. Mavromoustakis, C. Dobre, & E. Pallis (Eds.), Mobile big data (pp. 129–143). Cham: Springer.

    Chapter  Google Scholar 

  12. Torres, A., Piñol, P., Calafate, C. T., Cano, J.-C., Manzoni, P. (2014). Evaluating H. 265 real-time video flooding quality in highway V2V environments. In: Proceedings of IEEE international conference on WCNC, Istanbul, Turkey, (pp. 2716–2721).

  13. Al-Kharasani, N. M., Zulkarnain, Z. A., Subramaniam, S., & Hanapi, Z. M. (2018). An efficient framework model for optimizing routing performance in VANETs. Sensors,18, 597.

    Article  Google Scholar 

  14. Jiang, D., Shi, L., Zhang, P., & Ge, X. (2016). QoS constraints-based energy-efficient model in cloud computing networks for multimedia clinical issues. Multimedia Tools and Applications,75, 14307–14328.

    Article  Google Scholar 

  15. Venkatramana, D. K. N., Srikantaiah, S. B., & Moodabidri, J. (2018). CISRP: connectivity-aware intersection-based shortest path routing protocol for VANETs in urban environments. IET Networks,7, 152–161.

    Article  Google Scholar 

  16. Sattar, S., Qureshi, H. K., Mumtaz, S., & Rodriguez, J. (2018). Reliability and energy-efficiency analysis of safety message broadcast in VANETs. Computer Communications,119, 118–126.

    Article  Google Scholar 

  17. Bharati, S., & Zhuang, W. (2018). Link-layer cooperative communication in vehicular networks. Berlin: Springer.

    Book  Google Scholar 

  18. Fazio, P., De Rango, F., Sottile, C., & Santamaria, A. F. (2013). Routing optimization in vehicular networks: A new approach based on multiobjective metrics and minimum spanning tree. International Journal of Distributed Sensor Networks,2013, 13.

    Google Scholar 

  19. Nasir, M. K., Shah, S. A. A., Qureshi, M. A., Oche, M., & Noor, R. M. (2014). Adapting geographical DTN routing for enhanced connectivity in partitioned VANETs on highways. In Proceedings of IEEE region 10 symposium, Kuala Lumpur, Malaysia, 2014 (pp. 105–110). IEEE.

  20. Wahid, I., Ikram, A. A., Ahmad, M., Ali, S., & Ali, A. (2018). State of the art routing protocols in VANETs: A review. Procedia Computer Science,130, 689–694.

    Article  Google Scholar 

  21. Tripp-Barba, C., Urquiza-Aguiar, L., Igartua, M. A., Rebollo-Monedero, D., de la Cruz Llopis, L. J., Mezher, A. M., et al. (2014). A multimetric, map-aware routing protocol for VANETs in urban areas. Sensors,14, 2199–2224.

    Article  Google Scholar 

  22. Wang, X., Cheng, H., & Le, D. (2018). A routing scheme for connecting delay-sensitive urban vehicular networks to the IPv6-based internet. Telecommunication Systems,69, 1–16.

    Article  Google Scholar 

  23. Boukerche, A. (2004). Performance evaluation of routing protocols for ad hoc wireless networks. Mobile Networks and Applications,9, 333–342.

    Article  Google Scholar 

  24. Boukerche, A., Turgut, B., Aydin, N., Ahmad, M. Z., Bölöni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks,55, 3032–3080.

    Article  Google Scholar 

  25. Naumov, V., & Gross, T. R. (2007). Connectivity-aware routing (CAR) in vehicular ad-hoc networks. In Proceedings of IEEE international conference on INFOCOM, Anchorage, AK, US (pp. 1919–1927).

  26. Altayeb, M., & Mahgoub, I. (2013). A survey of vehicular ad hoc networks routing protocols. International Journal of Innovation and Applied Studies,3, 829–846.

    Google Scholar 

  27. Zhao, J., & Cao, G. (2008). VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,57, 1910–1922.

    Article  Google Scholar 

  28. Chen, Y.-S., Lin, Y.-W., & Pan, C.-Y. (2011). DIR: diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems,46, 299–316.

    Article  Google Scholar 

  29. Nikaein, N., Labiod, H., & Bonnet, C. (2000). DDR: Distributed dynamic routing algorithm for mobile ad hoc networks. In Proceedings of the 1st ACM international symposium on mobile ad hoc networking & computing (pp. 19–27).

  30. Tschudin, C., Gold, R., Rensfelt, O., & Wibling, O. (2004). LUNAR: A lightweight underlay network ad-hoc routing protocol and implementation. In Proceedings of NEW2AN, St. Petersburg, Russia (pp. 346–348).

  31. Chen, L., & Heinzelman, W. B. (2007). A survey of routing protocols that support QoS in mobile ad hoc networks. IEEE Network, 21, 30–38.

    Article  Google Scholar 

  32. Kim, J.-H., & Lee, S. (2011). Reliable routing protocol for vehicular ad hoc networks. AEU-International Journal of Electronics and Communications,65, 268–271.

    Article  Google Scholar 

  33. Smiri, S., Boushaba, A., Abbou, R. B., & Zahi, A. (2018) Geographic and topology based routing protocols in vehicular ad-hoc networks: Performance evaluation and QoS analysis. In International conference on intelligent systems and computer vision (ISCV) (pp. 1–8).

  34. Singh, G. D., Tomar, R., Sastry, H. G., & Prateek, M. (2018). A review on VANET routing protocols and wireless standards. Smart computing and informatics (pp. 329–340). Berlin: Springer.

    Chapter  Google Scholar 

  35. Jiang, D., Li, W., & Lv, H. (2017). An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing,220, 160–169.

    Article  Google Scholar 

  36. Jiang, D., Xu, Z., Wang, W., Wang, Y., & Han, Y. (2015). A collaborative multi-hop routing algorithm for maximum achievable rate. Journal of Network and Computer Applications,57, 182–191.

    Article  Google Scholar 

  37. Jerbi, M., Senouci, S.-M., Meraihi, R., & Ghamri-Doudane, Y. (2007). An improved vehicular ad hoc routing protocol for city environments. In IEEE international conference on communications (pp. 3972–3979).

  38. Ho, Y. H., Ho, A. H., & Hua, K. A. (2008). Routing protocols for inter-vehicular networks: A comparative study in high-mobility and large obstacles environments. Computer Communications,31, 2767–2780.

    Article  Google Scholar 

  39. Tamizhselvi, A., & Banu, D. R. S. D. W. (2012). Performance evaluation of geographical routing protocol under different traffic scenario. International Journal of Computer Science and Telecommunications,3, 64–67.

    Google Scholar 

  40. Maowad, H., & Shaaban, E. (2012). Efficient routing protocol for vehicular ad hoc networks. In Proceedings of IEEE ICNSC, Beijing, China (pp. 209–215).

  41. Tee, C. A. T. H., & Lee, A. C. R. (2008). Survey of position based routing for inter vehicle communication system. In Proceedings of 1st international conference on DFmA, Penang, Malaysia (pp. 174–182).

  42. Sujatha, S., & Soundeswari, P. (2012). Comparative and behavioral study on VANET routing protocols. IOSR Journal of Computer Engineering (IOSRJCE),5, 41–45.

    Article  Google Scholar 

  43. Soares, V. N. G. J., Rodrigues, J. J. P. C., & Farahmand, F. (2014). GeoSpray: A geographic routing protocol for vehicular delay-tolerant networks. Information Fusion,15, 102–113.

    Article  Google Scholar 

  44. Lee, K. C., Cheng, P.-C., & Gerla, M. (2010). GeoCross: A geographic routing protocol in the presence of loops in urban scenarios. Ad Hoc Networks,8, 474–488.

    Article  Google Scholar 

  45. Cha, S.-H., Lee, K.-W., & Cho, H.-S. (2012). Grid-based predictive geographical routing for inter-vehicle communication in urban areas. International Journal of Distributed Sensor Networks,8, 819497.

    Article  Google Scholar 

  46. Braga, R. B., & Martin, H. (2011). Understanding geographic routing in vehicular ad hoc networks. In Proceedings of 3rd international conference on GEOProcessing, Gosier, Guadeloupe, France (pp. 17–22).

  47. Paul, B., & Bikas, A. N. (2011). VANET routing protocols: Pros and Cons. International Journal of Computer Applications,20, 28–34.

    Article  Google Scholar 

  48. Shieh, W.-Y., Hsu, C.-C. J., & Wang, T.-H. (2018). Vehicle positioning and trajectory tracking by infrared signal-direction discrimination for short-range vehicle-to-infrastructure communication systems. IEEE Transactions on Intelligent Transportation Systems,19, 368–379.

    Article  Google Scholar 

  49. Ranjan, P., & Ahirwar, K. K. (2011). Comparative study of vanet and manet routing protocols. In Proceedings of the international conference on advanced computing and communication technologies (ACCT 2011) Copyright, 2011.

  50. Chennikara-Varghese, J., Chen, W., Altintas, O., & Cai, S. (2006). Survey of routing protocols for inter-vehicle communications. In Proceedings of 3rd annual international conference on mobile ubiquitoussyst: Networking and services, San Jose, CA (pp. 1–5).

  51. Kumar, S., Narayan, K. D., & Kumar, J. (2011). Qualitative based comparison of routing protocols for VANET. Journal of Information Engineering and Applications, 1, 13–17.

    Google Scholar 

  52. Johnson, D., Hu, Y., & Maltz, D. (2007). The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. RFC 4728.

  53. Clausen, T., & Jacquet, P. (2003). Optimized link state routing protocol (OLSR). 2070-1721.

  54. Royer, E. M., & Perkins, C. E. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of 2nd IEEE workshop on mobile computing systems and applications (pp. 90–100).

  55. Oche, M., Noor, R. M., & Chembe, C. (2017). Multivariate statistical approach for estimating QoE of real-time multimedia applications in vehicular ITS network. Computer Communications,104, 88–107.

    Article  Google Scholar 

  56. Ramasubramanian, V., Haas, Z. J., & Sirer, E. G. (2003). SHARP: A hybrid adaptive routing protocol for mobile ad hoc networks. In Proceedings of the 4th ACM international symposium on mobile ad hoc networking & computing (pp. 303–314).

  57. Wang, L., & Olariu, S. (2004). A two-zone hybrid routing protocol for mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems,15, 1105–1116.

    Article  Google Scholar 

  58. Jia, D., Ngoduy, D., & Vu, H. L. (2018). A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication (pp. 1–25). Transportmetrica B: Transport Dynamics.

    Google Scholar 

  59. Singh, J., & Singh, K. (2018). Congestion control in vehicular ad hoc network: A review. In D. Lobiyal, V. Mansotra, & U. Singh (Eds.), Next-generation networks (pp. 489–496). Singapore: Springer.

    Chapter  Google Scholar 

  60. Prakash, R., Malviya, H., Naudiyal, A., Singh, R., & Gehlot, A. (2018). An Approach to inter-vehicle and vehicle-to-roadside communication for safety measures. In R. Singh, S. Choudhury, & A. Gehlot (Eds.), Intelligent communication, control and devices (pp. 1603–1610). Singapore: Springer.

    Chapter  Google Scholar 

  61. Ni, Y., He, J., Cai, L., & Bo, Y. (2018). Data uploading in hybrid V2V/V2I vehicular networks: Modeling and cooperative strategy. IEEE Transactions on Vehicular Technology,67, 4602–4614.

    Article  Google Scholar 

  62. Wang, Q., Matolak, D. W., & Ai, B. (2018). Shadowing characterization for 5-GHz vehicle-to-vehicle channels. IEEE Transactions on Vehicular Technology,67, 1855–1866.

    Article  Google Scholar 

  63. Dwivedi, U., & Upadhyay, A. R. (2018). Vehicle to vehicle communication in vehicular network simulation environment: Analysis and future perspectives. Journal of Network Communications and Emerging Technologies (JNCET), 8, 68–72.

    Google Scholar 

  64. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems,19, 1–15.

    Article  Google Scholar 

  65. Chen, J., Mao, G., Li, C., Liang, W., & Zhang, D. (2018). Capacity of cooperative vehicular networks with infrastructure support: Multiuser case. IEEE Transactions on Vehicular Technology,67, 1546–1560.

    Article  Google Scholar 

  66. Gao, Z., Chen, D., Yao, N., Lu, Z., & Chen, B. (2018). A novel problem model and solution scheme for roadside unit deployment problem in VANETs. Wireless Personal Communications,98, 651–663.

    Article  Google Scholar 

  67. Eze, E. C., Zhang, S., & Liu, E. (2017). Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proceedings of ICAC, Cranfield, England (pp. 176–181).

  68. Agarwal, P. (2018). Technical review on different applications, challenges and security in VANET. Journal of Multimedia Technology & Recent Advancements,4, 21–30.

    Google Scholar 

  69. Omar, N., Yaakob, N., Farook, R. S. M., Husin, Z., Zain, A. S. M., Elshaikh, M., & Halim, A. H. A. (2018). A network coding-aware directional broadcast routing scheme for VANET. In MATEC web of conferences (p. 06012).

  70. Jena, M., & Rana, A. (2012). Multi-constrained QoS routing issues in high-speed multimedia networks. International Journal of Computer Science and Information Technologies,3, 4770–4773.

    Google Scholar 

  71. Crawley, E., Nair, R., Rajagopalan, B., & Sandick, H. (1998). A framework for QoS-based routing in the internet. draft-ietf-qosr-framework-05.txt.

  72. Kumar, Y., Kumar, P., & Kadian, A. (2011). A survey on routing mechanism and techniques in vehicle to vehicles communication (VANET). International Journal of Computer Science and Engineering Survey, 2, 135–143.

    Article  Google Scholar 

  73. Adibi, S. (2010). Quality of Service Architectures for Wireless Networks: Performance Metrics and Management: Performance Metrics and Management. Hershey: IGI Global.

    Google Scholar 

  74. Upadhyaya, S., & Devi, G. (2014). Characteristic evaluation of distributed QoS routing. International Journal of Computer Science and Mobile Computing,3, 692–706.

    Google Scholar 

  75. Paul, P., & Raghavan, S. (2002). Survey of QoS routing. In Proceedings of the international conference on computer communication (p. 50).

  76. Peng, B., Kemp, A. H., & Boussakta, S. (2006). A novel load sensitive QoS routing algorithm for streaming applications. In Proceedings of ICC, Istanbul, Turkey (pp. 938–942).

  77. Santhi, G., & Nachiappan, A. (2010). A survey of QoS routing protocols for mobile ad hoc networks. International Journal of Computer Science & Information Technology (IJCSIT), 2, 125–136.

    Article  Google Scholar 

  78. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling,53, 2238–2250.

    Article  Google Scholar 

  79. Lu, T., & Zhu, J. (2013). A genetic algorithm for finding a path subject to two constraints. Applied Soft Computing,13, 891–898.

    Article  Google Scholar 

  80. Xia, F. (2008). QoS challenges and opportunities in wireless sensor/actuator networks. Sensors,8, 1099–1110.

    Article  Google Scholar 

  81. Xu, Q., Mak, T., Ko, J., & Sengupta, R. (2007). Medium access control protocol design for vehicle–vehicle safety messages. IEEE Transactions on Vehicular Technology,56, 499–518.

    Article  Google Scholar 

  82. Wang, Z., & Crowcroft, J. (1996). QoS routing for supporting multimeda application. IEEE Journal on Selected Areas in Communications, 14, 1228–1234.

    Article  Google Scholar 

  83. Becker, P. (2007). QoS routing protocols for mobile ad-hoc networks—A survey (Vol. 6). Kaiserslautern: University of Kaiserslautern.

    Google Scholar 

  84. Bernsen, J., & Manivannan, D. (2008). Routing protocols for vehicular ad hoc networks that ensure quality of service. In Proceedings of ICWMC, Athens, Greece (pp. 1–6).

  85. Peng, H., Liang, L., Shen, X., & Li, G. Y. (2018). Vehicular communications: A network layer perspective. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2833427.

    Article  Google Scholar 

  86. Tambuwal, A. B., Noor, R. M., & Oche, M. (2013). Improvement of DSR routing protocol using TTL-based scheme in mobile ad hoc networks. In Proceedings of IEEE international conference on RFID-TA, Johor Bahru, Malaysia (pp. 1–6).

  87. Gangwar, S., & Kumar, K. (2011). Mobile ad hoc networks: A detailed survey of QoS routing protocols. International Journal,2, 309.

    Google Scholar 

  88. Jiancai, L., Feng, C., & Jiakai, X. (2010). The study of routing strategies in vehicular ad-hoc networks. In Proceedings of the international conference on WCSP, Suzhou, China (pp. 1–5).

  89. Sun, W., Yamaguchi, H., Yukimasa, K., & Kusumoto, S. (2006). GVGrid: A QoS routing protocol for vehicular ad hoc networks. In Proceedings of 14th IEEE IWQoS, New Haven, CT, USA (pp. 130–139).

  90. Shaikhy, A., Rexfordz, J., & Shiny, K. G. (1997). Dynamics of quality-of-service routing with inaccurate link-state information. Ann Arbor,1001, 48109.

    Google Scholar 

  91. He, R., Rutagemwa, H., & Shen, X. (2008). Differentiated reliable routing in hybrid vehicular ad-hoc networks. In Proceedings of IEEE international conference on communications (pp. 2353–2358).

  92. Niu, Z., Yao, W., Ni, Q., & Song, Y. (2007). Study on QoS support in 802.11 e-based multi-hop vehicular wireless ad hoc networks. In Proceedings of IEEE international conference on networking, sensing and control (pp. 705–710).

  93. Korkmaz, G., Ekici, E., & Özgüner, F. (2010). Supporting real-time traffic in multihop vehicle-to-infrastructure networks. Transportation Research Part C-Emerging Technologies,18, 376–392.

    Article  Google Scholar 

  94. Huang, C.-J., Chuang, Y.-T., Chen, Y.-J., Yang, D.-X., & Chen, I.-F. (2009). QoS-aware roadside base station assisted routing in vehicular networks. Engineering Applications of Artificial Intelligence,22, 1292–1301.

    Article  Google Scholar 

  95. Niu, Z., Yao, W., Ni, Q., & Song, Y. (2007). DeReQ: A QoS routing algorithm for multimedia communications in vehicular ad hoc networks. In Proceedings of IEEE international conference on wireless communications and mobile computing (pp. 393–398).

  96. Mo, Z., Zhu, H., Makki, K., & Pissinou, N. (2006). MURU: A multi-hop routing protocol for urban vehicular ad hoc networks. In Proceedings of 3rd annual international conference on mobility ubiquitous system networking and services, San Jose, CA, USA (pp. 1–8).

  97. Bernsen, J., & Manivannan, D. (2008). Routing protocols for vehicular ad hoc networks that ensure quality of service. In Proceedings of ICWMC’, Athens, Greece (pp. 1–6).

  98. Namboodiri, V., & Lixin, G. (2007). Prediction-based routing for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,56(4), 2332–2345.

    Article  Google Scholar 

  99. Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology,60, 4560–4574.

    Article  Google Scholar 

  100. Hsieh, Y.-L., & Wang, K. (2012). A road-based QoS-aware multipath routing for urban vehicular ad hoc networks. In Proceedings of IEEE Globecom, Anaheim, CA, USA (pp. 189–194).

  101. Shaikh, A., Rexford, J., & Shin, K. G. (2001). Evaluating the impact of stale link state on quality-of-service routing. IEEE/ACM Transactions on Networking,9, 162–176.

    Article  Google Scholar 

  102. Bitam, S. & Mellouk, A. (2011). QoS swarm bee routing protocol for vehicular ad hoc networks. In Proceedings of IEEE ICC, Kyoto, Japan (pp. 1–5).

  103. Van Mieghem, P., Kuipers, F. A., Korkmaz, T., Krunz, M., Curado, M., Monteiro, E., et al. (2003). Quality of service routing. In M. Smirnov (Ed.), Quality of future internet services (pp. 80–117). Berlin: Springer.

    Chapter  Google Scholar 

  104. Toutouh, J., García-Nieto, J., & Alba, E. (2012). Intelligent OLSR routing protocol optimization for vaneTs. IEEE Transactions on Vehicular Technology,61, 1884–1894.

    Article  Google Scholar 

  105. Clausen, T., & Jacquet, P. (2003). IETF RFC-3626. Optimized link state routing protocol OLSR. The Internet Society. http://www.ietf.org/rfc/rfc3626.txt. Accessed 16 Feb 2017.

  106. Bhatt, P., & Srivastava, R. (2013). A Qos adaptive routing scheme (IGLAR) for highly dynamic vehicular networks with support to service and priority. Network and Complex Systems,3, 1–13.

    Google Scholar 

  107. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks. Computer Communications,36, 1422–1435.

    Article  Google Scholar 

  108. Otrok, H., Mourad, A., Robert, J.-M., Moati, N., & Sanadiki, H. (2011). A cluster-based model for QoS-OLSR protocol. In Proceedings of IWCMC, Istanbul, Turkey (pp. 1099–1104).

  109. Dietzel, S., Bako, B., Schoch, E., & Kargl, F. (2009). A fuzzy logic based approach for structure-free aggregation in vehicular ad-hoc networks. In Proceedings of the sixth ACM international workshop on vehicular InterNETworking (pp. 79–88).

  110. Mostafa, A., Vegni, A. M., Bandaranayake, A., & Agrawal, D. P. (2014). QoS-aware node selection algorithm for routing protocols in VANETs. Procedia Computer Science,40, 66–73.

    Article  Google Scholar 

  111. Sun, Y., Luo, S., Dai, Q., & Ji, Y. (2015). An adaptive routing protocol based on QoS and vehicular density in urban VANETs. International Journal of Distributed Sensor Networks,501, 631092.

    Article  Google Scholar 

  112. Eiza, M. H., Owens, T., & Ni, Q. (2016). Secure and robust multi-constrained QoS aware routing algorithm for VANETs. IEEE Transactions on Dependable and Secure Computing,13, 32–45.

    Article  Google Scholar 

  113. Dua, A., Kumar, N., & Bawa, S. (2015). QoS-aware data dissemination for dense urban regions in vehicular ad hoc networks. Mobile Networks and Applications,20, 773–780.

    Article  Google Scholar 

  114. Fekair, M. E. A., Lakas, A., & Korichi, A. (2016). CBQoS-Vanet: Cluster-based artificial bee colony algorithm for QoS routing protocol in VANET. In Proceedings of international conference on selected topics in mobile & wireless networking (MoWNeT) (pp. 1–8).

  115. Li, G., Boukhatem, L., & Wu, J. (2017). Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization. IEEE Transactions on Vehicular Technology,66, 3249–3264.

    Article  Google Scholar 

  116. Krajzewicz, D. (2010). Traffic simulation with SUMO–simulation of urban mobility. In J. Barceló (Ed.), Fundamentals of traffic simulation (pp. 269–293). Berlin: Springer.

    Chapter  Google Scholar 

  117. Karnadi, F. K., Zhi H. M., & K. Lan. (2007). Rapid generation of realistic mobility models for VANET. In Proceedings of the IEEE conference on wireless communications and networking, 2007.WCNC 2007 (pp. 2506–2511).

  118. NS3. Nework Simulator Version 3. http://www.nsnam.org/. Accessed 20 Apr 2017.

  119. OpenStreatMap. https://josm.openstreetmap.de. Accessed 26 Nov 2017.

  120. OpenStreatMap. https://www.nsnam.orgwww.openstreetmap.org/search?query=Petaling%20Jaya%20Malaysia#map=14/3.1003/101.6358a. Accessed 26 Nov 2017.

  121. Video traces for network performance evaluation. Available at http://www-tkn.ee.tu-berlin.de/research/trace/trace.html. Accessed 26 Nov 2017.

  122. Eiza, M. H., Thomas, O., & Qiang, N. (2016). Secure and robust multi-constrained QoS aware routing algorithm for VANETs. IEEE Transactions on Dependable and Secure Computing,13(1), 32–45.

    Article  Google Scholar 

  123. Dandelski, C., Wenning, B.-L., Kuhn, M., & Pesch, D. (2015). Broadcast storm problem in dense wireless lighting control networks. In Proceedings international symposium wireless communication systems (ISWCS), Brussels, Belgium (pp. 91–95).

  124. Panichpapiboon, S., & Pattara-Atikom, W. (2012). A review of information dissemination protocols for vehicular ad hoc networks. IEEE Communications Surveys and Tutorials,14, 784–798.

    Google Scholar 

  125. Li, G., Boukhatem, L., & Martin, S. (2015). An intersection-based QoS routing in vehicular ad hoc networks. Mobile Networks and Applications,20, 268–284.

    Article  Google Scholar 

  126. Hashem Eiza, M. (2014). Secure multi-constrained QoS reliable routing algorithm for vehicular ad hoc networks (VANETs). Ph.D. dissertation. http://dspace.brunel.ac.uk/handle/2438/10204. Accessed 15 July 2017.

  127. Bitam, S. (2012). Bandwidth impact on bee swarm routing for vehicular ad hoc networks. In Proceedings of the multimedia computing and systems (ICMCS) (pp. 533–537).

  128. Boban, M., Tonguz, O. K., & Barros, J. (2009). Unicast communication in vehicular ad hoc networks: A reality check. IEEE Communications Letters,13, 995–997.

    Article  Google Scholar 

  129. Eiza, M. H., Owens, T., Ni, Q., & Shi, Q. (2015). Situation-aware QoS routing algorithm for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,64, 5520–5535.

    Article  Google Scholar 

  130. Waharte, S., Boutaba, R., Iraqi, Y., & Ishibashi, B. (2006). Routing protocols in wireless mesh networks: Challenges and design considerations. Multimedia Tools and Applications,29, 285–303.

    Article  Google Scholar 

  131. Zafar, H., Zuhairi, M., Harle, D., & Andonovic, I. (2012). A survey of quality of service-aware routing approaches for mobile ad hoc networks. IETE Technical Review,29, 188.

    Article  Google Scholar 

  132. Kuipers, F., Van Mieghem, P., Korkmaz, T., & Krunz, M. (2002). An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine,40, 50–55.

    Article  Google Scholar 

  133. Shigang, C., & Nahrstedt, K. (1998). On finding multi-constrained paths. In Proceedings of the IEEE international conference on communications (Vol. 2, pp. 874–879).

  134. Michael, R. G., & David, S. J. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: WH Freeman & Co.

    MATH  Google Scholar 

  135. Ros, F. J., & Ruiz, P. M. (2013). Minimum broadcasting structure for optimal data dissemination in vehicular networks. IEEE Transactions on Vehicular Technology,62, 3964–3973.

    Article  Google Scholar 

  136. Kuipers, F. A., Yang, S., Trajanovski, S., & Orda, A. (2014). Constrained maximum flow in stochastic networks. Constrained. In Proceedings of the IEEE international conference on network protocols (pp. 397–408).

  137. Cheng, G., & Ansari, N. (2002). Multiple additively constrained path selection. Proceedings IEEE Communications,2002, 237–241.

    Article  Google Scholar 

  138. Juva, I. (2002). Analysis of quality of service routing approaches and algorithms. IEEE Communications Magazine,40, 58–65.

    Google Scholar 

  139. Upadhyaya, S., & Dhingra, G. (1792). Exploring issues for QoS based routing algorithms. International Journal on Computer Science and Engineering,2, 2010.

    Google Scholar 

  140. Wang, Z. (1999). On the complexity of quality of service routing. Information Processing Letters,69, 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  141. Reeves, D. S., & Salama, H. F. (2000). A distributed algorithm for delay-constrained unicast routing. IEEE/ACM Transactions on Networking (TON),8, 239–250.

    Article  Google Scholar 

  142. Hassin, R. (1992). Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research,17, 36–42.

    Article  MathSciNet  MATH  Google Scholar 

  143. Juttner, A., Szviatovski, B., Mécs, I., & Rajkó, Z. (2001). Lagrange relaxation based method for the QoS routing problem. In Proceedings of the 20th IEEE conference computer and communications societies (INFOCOM), Anchorage, AK, US (pp. 859–868).

  144. Van Mieghem, P., De Neve, H., & Kuipers, F. (2001). Hop-by-hop quality of service routing. Computer Networks,37, 407–423.

    Article  Google Scholar 

  145. Liu, G., & Ramakrishnan, K. (2001). A* Prune: An algorithm for finding K shortest paths subject to multiple constraints. In Proceedings 20th IEEE conference computer and communications societies (INFOCOM), Anchorage, AK, US (pp. 743–749).

  146. De Neve, H., & Van Mieghem, P. (2000). TAMCRA: A tunable accuracy multiple constraints routing algorithm. Computer Communications,23, 667–679.

    Article  Google Scholar 

  147. Jaffe, J. M. (1984). Algorithms for finding paths with multiple constraints. Networks,14, 95–116.

    Article  MathSciNet  MATH  Google Scholar 

  148. Korkmaz, T., & Krunz, M. (2001). Multi-constrained optimal path selection. In Proceedings of the 20th IEEE conference computer and communications societies (INFOCOM), Anchorage, AK, US. (pp. 834–843).

  149. Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU Press.

    MATH  Google Scholar 

  150. Van Mieghem, P., & Kuipers, F. A. (2004). Concepts of exact QoS routing algorithms. IEEE/ACM Transactions on Networking,12, 851–864.

    Article  Google Scholar 

  151. Rosati, L., Berioli, M., & Reali, G. (2008). On ant routing algorithms in ad hoc networks with critical connectivity. Ad Hoc Networks,6, 827–859.

    Article  Google Scholar 

  152. Jothi, K. R., & Ebenezer Jeyakumar, A. (2015). Optimization and quality-of-service protocols in VANETs: A review. In L. P. Suresh, et al. (Eds.), Artificial intelligence and evolutionary algorithms in engineering systems (Vol. 324, pp. 275–284). Berlin: Springer.

    Chapter  Google Scholar 

  153. Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research (JAIR),9, 317–365.

    Article  MATH  Google Scholar 

  154. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine,1, 28–39.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the postgraduate research of Kampala International University and the High Impact Research of University of Malaya and Ministry of Higher Education of Malaysia for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oche, M., Tambuwal, A.B., Chemebe, C. et al. VANETs QoS-based routing protocols based on multi-constrained ability to support ITS infotainment services. Wireless Netw 26, 1685–1715 (2020). https://doi.org/10.1007/s11276-018-1860-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1860-7

Keywords

Navigation