
ar
X

iv
:2

00
6.

08
19

9v
1 

 [
cs

.N
I]

  1
5 

Ju
n 

20
20

Wireless Networks manuscript No.
(will be inserted by the editor)

Reducing the Total Cost Of Ownership in Radio Access
Networks by Using Renewable Energy Resources

Turgay Pamuklu · Cem Ersoy

Received: date / Accepted: date

Abstract Increasing electricity prices motivates the mo-
bile network operators to find new energy-efficient solu-

tions for radio access networks (RANs). In this study,

we focus on a specific type of RAN where the stand-

alone solar panels are used as alternative energy sources

to the electrical grid energy. First, we describe this hy-
brid energy based radio access network (HEBRAN) and

formulate an optimization problem which aims to re-

duce the total cost of ownership (TCO) of this net-

work. Then, we propose a framework that provides a
cost-efficient algorithm for choosing the proper size for

the solar panels and batteries of a HEBRAN and two

novel switch on/off algorithms which regulate the con-

sumption of grid electricity during the operation of the

network. In addition, we create a reduced model of the
HEBRAN optimization problem to solve it in a Mixed

Integer Linear Programming (MILP) Solver. The re-

sults show that our algorithms outperform the MILP

solution and classical switch on/off methods. Moreover,
our findings show that migrating to a HEBRAN system

is feasible and has cost-benefits for mobile network op-

erators.
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1 Introduction

Recent reports show that the worldwide electricity pro-
duction increases each year to satisfy the global energy

demands [1]. However, the major part of this produc-

tion is based on fossil fuels which have harmful effects

both on economy and environment [2]. The Economy

struggles with the increasing of electricity prices [3] and
depleting of fossil fuels [4] and the environment suffers

from the greenhouse gases that mostly come from the

combustion of these fossil fuels. Therefore economic and

environmental problems lead to a renewed interest in re-
lated research to reduce the consumption of fossil fuels

and on-grid electricity in many different areas. The ra-

dio access network (RAN) researchers are not an excep-

tion, they are also motivated to explore energy-efficient

solutions to reduce the on-grid energy consumption.

A considerable amount of these studies focus on pro-

viding a more energy-efficient operating method for the
base stations when they aim to achieve reducing the en-

ergy consumption in a RAN. They have two important

motivations: the base stations in a RAN form the main

source (60-80%) of the energy consumption [5] and they

are under-utilized during most of their operating time.
Improvement efforts usually take the advantage of data

traffic changes in time [6]. Some of the researchers adapt

the transmission power of the base stations by the traf-

fic variation, which is called cell-breathing [7,8] and the
others use an even more radical version of this method,

which selectively switches off the base stations accord-

ing to the traffic fluctuations [5,9,10,11]. The results

http://arxiv.org/abs/2006.08199v1
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Fig. 1 Energy System Model in a HEBRAN.

show that both techniques reduce a significant amount

of energy consumption in a RAN. In this paper, we
also use the latter technique as a tool in our solution

to deal with the environmental and economic effects of

the excessive use of on-grid electricity.

Another key component we adopt in our solution

is the use of renewable energy to reduce the consump-
tion of on-grid electricity. In our solution, a base sta-

tion has two energy sources complementing each other

(Figure 1). The renewable energy source reduces the

electrical grid energy consumption and the electrical

grid provides the energy demand in the case of the lack
of the insufficient renewable energy. This type of net-

work is named as hybrid energy based radio access net-

work (HEBRAN) [12]. Although operating this type

of a network is a new concept, there has been sig-
nificant amount of study focusing on the problems of

this new kind of network. For example, Han et al. [13]

demonstrate that operating a system with hybrid en-

ergy sources is an NP-hard problem and they decom-

pose this problem into two sub-problems to handle the
complexity. In the first sub-problem, they aim to opti-

mize the allocation of green energy (which is generated

by a solar panel) to each time interval for each base sta-

tion. In the second subproblem, they change the trans-
mission power of the base stations in each time interval

by considering their allocated green energy. Therefore

they use the generated green energy more efficiently

to reduce the overall energy consumption. Carreno et

al. [14] analyze a single base station system which can
change its coverage area with the amount of the re-

newable energy in this base station. The critical results

in this study show a cross-correlation between the user

satisfaction and the ratio of the renewable energy used
in this base station. Farooq et al. [15] propose an en-

ergy sharing framework, in which base stations in the

network can share their renewable energy over the grid.

Sheng et al. also aim to reduce the energy consumption

by using the centralized and distributed algorithms that

get benefit from smart grid architecture [16].

The third key component in our study is that we

provide a system-wide solution to reduce the total cost
of ownership (TCO) of a HEBRAN. This kind of a net-

work has two main expenditures: the capital expendi-

ture which is the investment cost of constructing this

new system and the operational expenditure which is
the cost of maintaining this new system [17]. In de-

tail, the capital expenditure of our hybrid system has

two main components: cost of the solar panels and cost

of the batteries in which the panels and the batteries

are installed on each base station in the network. Both
the installation cost and the amount of harvested re-

newable energy of a solar panel linearly increase by its

panel size. Also, the cost of a battery and its energy

storing capacity correlate by each other. Therefore we
have a renewable system sizing problem which can be

briefly summarized as the selection of the most cost-

efficient size of the solar panels and the batteries in a

HEBRAN. On the other hand, the operational expendi-

ture of this type of network has only one main compo-
nent: the electrical grid cost that is used to operate the

base stations of this network. The main tool we select

to cut down this second expenditure is the base station

switch on/off techniques with considering the amount
of stored renewable energy in the base stations. In addi-

tion to the electrical grid cost, maintenance cost of the

solar panels and the batteries can be added as an oper-

ational cost. In summary, in this paper, we propose an

optimized solution to reduce the total cost of ownership
(TCO) of a hybrid energy based radio access network

(HEBRAN).

To the best of our knowledge, our paper is the first

study which aim to reduce the TCO of a RAN in which

all base stations have both renewable and on-grid en-
ergy sources. For example, two recent studies [18,19]

aim to reduce the on-grid energy consumption but they

did not consider the capital expenditure of a HEBRAN.

Also they focus on a problem which only aim to bal-
ance the traffic load between a macro base station and

pico&micro base stations around this macro base sta-

tion. In a broader study by Han et al. [20], the au-

thors aim both the sizing problem of a HEBRAN and

its energy-efficient operation problem but their RAN
also have non-renewable energy base stations and the

main idea of their method is offloading the traffic from

the hybrid energy base stations to these non-renewable

energy base stations to reduce the size of the panels and
batteries in the hybrid energy base stations. In their fol-

lowing work [21], Han et al. propose a similar solution

but at that time they offload the traffic from the pure
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Fig. 2 The Hybrid Energy Based Radio Access Network
Model.

renewable energy base stations to the pure on-grid en-

ergy base stations. Our paper has three different aspects
from these two papers. First, in our system each base

station has their own renewable energy source and has

a connection to the electrical grid. Our studies show

that deploying a solar panel in each base station pro-
vides better results. Second, our operational decisions

consider the remaining energy in the batteries of the

base stations and focus on using renewable energy as

efficient as possible in each base station to reduce the

electrical grid energy consumption. On the other hand,
Han et al. [20,21] use a predetermined constant param-

eter for the renewable energy percentage in the network

and this approach is not efficient to preserve the renew-

able energy. Lastly, by using this constant they make a
static connection between the operational expenditure

and the capital expenditure. On the contrary, our ap-

proach dynamically connects these two expenditures to

reduce the TCO of the network in an efficient way.

The remainder of this paper is organized as follows.

We describe this new type of RAN and its cost opti-
mization problem in the second and third section, re-

spectively. In the fourth section, we propose novel solu-

tions to overcome this problem. Fifth section provides

the results of these solutions and the last chapter con-
cludes the paper.

2 System Description

In this section, we start to describe a HEBRAN system

as part of a real-world scenario and then we detail the

parts of this system in the following subsections.

Table 1 List of Notations

Sets Explanation

i ∈ I set of base stations

j ∈ J set of locations

t ∈ T set of discrete time intervals

Variables Explanation

si solar panel size of BS i

(0 ≤ s ≤ 6|b ∈ N )

bi battery size of BS i

(0 ≤ b ≤ 8|b ∈ N )
rit renewable energy usage ratio of BS i

(0 ≤ rit ≤ 1|rit ∈ ℜ )

xit base station on/off decision

(xit ∈ {0, 1})
zijt assigning decision

(zijt ∈ {0, 1})

Input Explanation

Ujt data traffic demand of location j

Sij service rate of BS i to location j

aEi energy consumption of BS i (kW)

cE electrical grid cost ($/kW)

cS unit cost of a solar panel ($/kW)
cB unit cost of a battery ($/2.5kW)

aB unit capacity of a battery (2.5kW)

ρ utilization bound of a base station

G(t) generated renewable energy in a time in-
terval

2.1 Scenario

The following scenario is a typical situation that the

researchers should aim to solve the cost optimization
problem explained in this paper:

1. A mobile network operator (MNO) has a RAN de-

ployed in an urban city sector. This RAN has both
macro and micro type base stations (an heteroge-

neous network), in which these two base station

types have different maximum transmission power

level and energy consumption specifications.
2. The operator wants to supply their base stations

with renewable energy sources like solar panels for

both improving the energy-efficiency and the sus-

tainability of their RAN.

3. In addition, the base stations in the network are not
well utilized, their energy consumption is almost the

same for different traffic loads. Therefore, the mo-

bile operator wants a new operational method in or-

der to reduce this idle unnecessary energy consump-
tion. Moreover, they should efficiently combine this

technique with the usage of the renewable energy

sources.
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Fig. 3 Five different data traffic patterns in a day period.

4. Also they need a feasibility analysis which show the

economic efficiency of this new generation RAN in

an urban sector.

Figure 2 demonstrates this scenario. Before starting

to formulate the problem in this scenario, we have to

detail the critical parts of a HEBRAN in the following

subsections. Table 1 summarizes the notations we use
in this section.

2.2 Traffic Model

First, we formulate the downlink data traffic. Since this

type of traffic rapidly increases by the increasing usage

of the internet and the invention of the new wireless net-
work devices. On the other hand, the mobile users need

far less bitrate for the uplink traffic [22]. For that rea-

son, providing an energy-efficient solution for the down-

link traffic is more crucial than a solution for the uplink

traffic. In addition, the new technologies (beyond 3G)
use packet switching technologies for the voice traffic

[23]. We should noticed that even we only consider the

downlink traffic in this paper, our methods are also ap-

plicable for the uplink traffic.

One of the most important studies about the dy-

namics of the data traffic in urban sectors is written

by Peng et al. [22], in which they analyze two-month

long real network data of a real mobile network oper-
ator. Their analysis shows that the data traffic signif-

icantly changes both temporally and spatially in four

different urban regions. In addition, they present two

critical findings that inspire our solution in this paper.
The first one is that the temporal change of data traffic

is more powerful in a day period but it is not significant

between the consecutive days. The second is that the
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Fig. 4 The traffic rate of our covered sector in a day period.

data traffic loads are diverse between very close loca-

tions especially in their peak hours. For that reasons,

although we do not use real data traffic in this paper,
we model it by considering these authors findings and

make it diverse both temporally and spatially which are

explained in the following paragraphs.

The temporal traffic profile we use in this paper

evolves from several papers. First, Marsan et al. [24]
propose a formula which create a one day period sinu-

soidal shape traffic for a RAN. Then, Hossain et al. [25]

modify this formula by adding a random fluctuation in

a day period. Finally Zhang et al. [11] add a multiplier
into this formula to create a diversity between differ-

ent locations. We modify this last formula by adding a

fluctuation between the days of a year and try to make

it diverse between the weekdays and weekends by con-

sidering the findings of Peng et al. [22]. Our formula is
given in Equation 1 in which κ is the value of the peak

hour traffic which depends on whether it is a weekday

or weekend, ϕ is a random value between the 3π/4 and

7π/4 which determines the peak hour of the traffic pro-
file, ν determines the abruptness of the traffic profile

and n(t) is a random value which provides a fluctua-

tion in this traffic profile. Therefore, we can model the

variation of data traffic between each hour and each day

by this formula.

fz(t) =
κ

2ν
[1 + sin(πt/12 + ϕ)]ν + n(t) (1)

Uj(t) = fHz
j
(.)(t), H

z
j (.) = {z|z < 5, z ∈ N)} (2)

We use a three-step method to create a traffic diver-

sity between the locations of the urban sector according

to the findings in [22]. In the first step, we create five
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Fig. 5 The traffic rate of our covered sector in a week period.

different traffic profiles by Equation 1 in which each

traffic profile have different peak hours (Figure 3). In
the second step, we create a map which have different

hotspots by using the kernel density estimation method

[26]. These hotspots present the different districts of an

urban sector such as business or residential districts. In
the third step, we assign the traffic profiles which we

create in the first step to these hotspots by using a pre-

calculated function Hz
j (.) which maps the j location to

the zth traffic profile which is shown in Equation 2.

Therefore we create a spatial diversity between the five
different districts which have different peak hours. Fig-

ure 4 and Figure 5 show the change of traffic rates in

a day period and in a week period for these different

districts, respectively. Lastly, we minimize the traffic
rates in the edge of the covered sector (white zones) to

eliminate the border effect.

2.3 Channel Model

We consider an urban sector where a set of base stations

(I) are already deployed to serve a set of location (J)

who demand a service from these base stations. This

section explains how these base stations satisfy the data
traffic required by these locations (Ujt, Section 2.2).

First, we have to calculate the path loss (Lij) between

each base station (i ∈ I) and each location (j ∈ J)

in this sector. For that purpose, we use the macro and
micro NLOS path loss models from the ITU-R report

[27] according to the type of the base station (i ∈ I).

After calculating the path loss, we calculate the received

signal - noise ratio (SNR, Γij) at the location side by

Equation 3.

Γij =
LijP

T
i

σ2
(3)

Sij = B log2(1 + Γij)(bit/sec) (4)

In this equation, Lij is the path loss, PT
i is the trans-

mission power of the base station i ∈ I and σ2 is the

Gaussian noise. Dealing with the interferences between

the base stations is out of scope in this paper and we

assume it is well managed by the frequency planning.
Finally, we use the Shannon capacity formula [28] to

calculate the service rate (spectral efficiency) of a base

station for a specific location (Equation 4). In this equa-

tion, B represents the bandwidth allocated to the base
station i ∈ I and Sij represents the service rate of this

base station to the location j ∈ J .

2.4 Base Station Energy Consumption Model

We use two different types of base stations in our study

which are named as macro and micro base stations.

Auer et al. analyze the energy consumption model of

several types of base stations in their paper includ-

ing these two types of base stations [29]. According to
their findings, both macro and micro base stations have

a large static energy consumption even they have not

been assigned to any location. With this in mind, we

prefer the base station switch on/off method over the
cell breathing method in which base stations have dif-

ferent transmission power levels [6]. Therefore the base

stations in our model have two level of energy consump-

tion: the value of their maximum transmission power

and the value of their deep sleep state. The deep sleep
state energy consumption does not change by the de-

cisions of our techniques and remaining as a constant

value in the lifetime of the network so we omit it from

the formula but it can be easily added to the TCO as
a constant value. We provide the energy consumption

values for both macro and micro base stations in Sec-

tion 5.

2.5 Renewable Energy System Model

Figure 1 shows an electrical grid energy supported re-

newable energy system for a base station. In this sys-

tem, the solar panel harvests the renewable energy from

sunlight, the battery stores this energy and the energy
source controller chooses the energy source that is used

to supply the base station. According to Hassan et al.

[30], itself based on [31], harvested green energy may be
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Fig. 6 Distribution of Harvested Solar Radiation in a Day
Period.

used directly by the system or may be stored in a bat-

tery for future use. Storing the green energy in a battery
does not only prevent the wasting of the excess green

energy but also maintains the more efficient usage of

the green energy. Although this system is not common

for a base station nowadays, Bloomberg Finance group
announced in one of their latest reports that using a

battery storage alongside with solar panels will become

an ordinary method for a rooftop system in 2020 [32].

Moreover, a recent report about the solar panel technol-

ogy in Germany also supported this new system. They
suggest that the prices of solar panels drop 19% each

year and they mention that the prices continue to drop

year by year [33]. With this in mind, we directly focus

on the base stations which have their own solar panels
and batteries. We explain the model of a solar panel

and a battery in our system in the following sections.

2.5.1 Solar Panel Model

Choosing an appropriate solar panel size1 for a base

station in a HEBRAN is crucial for both increasing

the renewable energy generating capacity and reduc-

ing the capital expenditure of this network.The relation
between the size of a solar panel and the amount of

the generated renewable energy by this panel is linear

according to National Renewable Energy Laboratory

[34]. While considering this relation, we use the empir-

ical data from the pvWatts application to calculate the
amount of the generated energy of a solar panel for each

time interval [34]. Their 30 years historical weather data

1 We have to clarify that in this paper, we use the “solar
panel size”clause to define the energy generating capacity of
this panel.
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Fig. 7 Distribution of Harvested Solar Radiation in a Year
Period.

provide us to calculate the detailed solar energy gener-

ation rate of a panel (G(t)) for different cities. They

provide each hour of the day data, thus we can simu-

late the change of the solar energy in several time scales.

Figure 6 and Figure 7 shows the change of generated
energy of a 4kW size of solar panel for different cities.

The other important thing is that the size of a so-

lar panel directly affects the installation cost (capital

expenditure) of a HEBRAN. Equation 5 shows how to
calculate this installation cost, in which cS is the unit

cost of a solar panel si is the solar panel size of base

station i. We can use this linear cost model, if the en-

ergy harvesting capacity of these panels is lower than

10kWh [34].

PanelCost($) =
∑

i∈I

cS($/kW ) ∗ si(kW ) (5)

ArrayArea(m2) =
Size(kW )

Efficiency(%)
∗

m2

1kW
(6)

However the solar panel size is not limited by only

its installation cost. According to our scenario, we have

to install these solar panels near to the base stations

which are usually on a rooftop of a building in an ur-
ban sector. Therefore we have to limit the size of a solar

panel by looking at the array area of this panel. Equa-

tion 6 shows the relation between the array area and

the size of a solar panel [35,34]. We limit the maximum
size of a solar panel as 6kW as a result of this relation.

2.5.2 Battery Model

First of all, we have to give some explanation about the

battery technology we use in this study. We choose the

lithium-ion based batteries in light of a recent report
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published by International Renewable Energy Agency

(IRENA) [36]. This report emphasizes that lithium-

ion batteries have several advantages when we compare

them with the other battery types. Especially their deep

discharge cycle capability that helps the base stations
to consume high amount of energy in a short time and

their power density, which makes them preferable to be

used in a small area, encourage us to choose lithium-ion

batteries. The same report also advises the lithium-ion
cells because of their decreasing price trends. Lastly,

the Navigant Research emphasizes that the distributed

energy storage system (DESS) market - our system is

a kind of DESS - prefers lithium-ion batteries as their

first choice for a battery [37].
One of the purposes of this work is the appropri-

ate battery size selection for an energy-efficient solu-

tion. However, the battery size and renewable energy

consumption rate has a complicated relation, which in-
creases the complexity of this size selection problem.

Han et al. [20] propose the following equation to define

this non-linear relation, itself based on [38].

Ri(t) = min
{

max
{

Ri(t− 1) + siG(t) − aEi rit, 0
}

,

aBbi

}

∀i ∈ I, ∀t ∈ T (7)

In this equation, Ri(t) is the stored/remaining battery

energy of the base station i ∈ I in time interval t ∈ T .

The maximum value of Ri(t) is the battery storage ca-

pacity value, aBbi, in which aB is the unit storage ca-

pacity and bi is the size of the battery which is a de-
cision parameter in our objective function. G(t) is the

generated renewable energy of a unit size solar panel

in the time interval t, si is the size of the solar panel

and aEi is the energy consumption of a base station in a
single time interval. Finally, the most important part,

Ri(t− 1) is the remaining battery energy from the pre-

vious time interval which means that the rit decisions

and G(t) values in the previous time intervals, directly

affect the current rit decision. In summary, our problem
becomes a non-linear problem due to this relation.

In this paper, the price of a lithium-ion battery

changes linearly with the capacity of this battery [39].

Equation 8 shows this relation, in which cB is the unit
battery price and bi is the size of the battery at base sta-

tion i .The other cost components of a battery system

are omitted in this study because they do not change

with the size of a battery, but can be added easily as a

constant without changing the performance of the pro-
posed solution. In addition, we assume the batteries in

our system are charged/discharged linearly in their life-

time for the simplicity.

BatteryCost($) =
∑

i∈I

cB($/kW ) ∗ bi(kW ) (8)

3 Cost Optimization Problem of a HEBRAN

In the previous section, we describe a scenario in which

the renewable energy systems using together with the

base stations in an urban sector and we explain the

critical parts of this scenario. This section explains the
optimization problem which begins by the details of the

objective function and the constraints in the problem

and finishes with the description of the complexity of

this formulated problem.

3.1 Problem Formulation

The optimization problem of a HEBRAN can be given
as:

min

{

∑

i∈I

cSsi +
∑

i∈I

cBbi +
∑

i∈I

∑

t∈T

cEaEi (1 − rit)xit

}

(9)

s.t.
∑

i∈I

Sijzijt ≥ Ujt, ∀j ∈ J , ∀t ∈ T (10)

∑

j∈J

Ujt

Sij

zijt ≤ ρ, ∀i ∈ I, ∀t ∈ T (11)

∑

i∈I

zijt ≤ 1, ∀j ∈ J , ∀t ∈ T (12)

xit |J | −
∑

j∈J

zijt ≥ 0, ∀i ∈ I, ∀t ∈ T (13)

rit ≤ min
{Ri(t)

aEi
xit, 1

}

, ∀i ∈ I, ∀t ∈ T (14)

rit ≥ min
{Ri(t)

aEi
xit, 1

}

, ∀i ∈ I, ∀t ∈ T (15)

We aim to minimize the TCO of this system which
is the sum of the capital expenditure and the oper-

ational expenditure. Migrating to a renewable energy

system has two main capital expenditure types which

are shown as the first two components in Equation 9.
The first one is the installation cost of the solar pan-

els and the second one is the installation cost of the

batteries. Since these components are briefly explained

in Section 2.5, we skip the details of the calculation of

these components in this section. The third component
in Equation 9 formulates the on-grid energy consump-

tion, in which cE is the electrical grid cost per kilo-

watt in a time interval, aEi is the energy consumption

of a base station in a time interval, rit is the ratio of
the renewable energy consumption and xit is the bi-

nary decision variable states that the base station i is

in switched on (active) mode . This equation shows that
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we can reduce the operational expenditure by increas-

ing either the renewable energy consumption ratio (rit)

or decreasing the number of the active base stations

(xit) in this network. Moreover, we have to notice that

the operational expenditure is calculated as the sum-
mation of every time interval during the life-cycle of

this renewable system. The maintenance cost of this

renewable system, which is another component of the

operational expenditure, is not included in Equation 9.
The reason is that this maintenance cost is a constant

value and does not change by any decision variable in

Equation 9.

We explained how to calculate the traffic rates of the

locations in an urban sector in Section 2.2. To satisfy
this data traffic (Quality of Service), each location in

this sector should be serviced by a base station at every

time interval. Inequality 10 formulates this assigning

operation, in which Ujt is the traffic rate of the location
j in the time interval t, Sij is the maximum service rate

of the base station i to the location j and zijt is a binary

decision variable which equals to one when the base

station i is assigned to the location j in the time interval

t. We have to notice that instead of adding another
constraint for the coverage of the region, we choose the

minimum Ujt larger than zero for each location and the

time interval. Since at least one base station should be

assigned to a location that have a traffic rate larger
than zero, Inequality 10 also provides the full coverage

of the region.

In addition to satisfying the traffic rates of the loca-

tions and providing the coverage of the sector, the delay
of service in the base stations should be lower than a

reasonable quality of service. Inequality 11 provides this

quality of service by limiting the total service load on

a base station, in which ρ is the maximum system load

that is allowed on a base station in this network.

Inequality 10 allows that more than one base station

may serve to the same user in a location in the same

time interval. Although a wireless communication tech-

nology that has a Coordinated Multi-Point (CoMP)
property may use more than one base station to serve

the same user [40], the technology that we study may

not support this property. Therefore, we add Inequal-

ity 12 to guarantee that a user is served by only one

base station in the same time interval. For the CoMP
cases, this inequality can be removed.

The decision parameter zijt also determines one of

the objective function parameters: the base station switch

on/off decision (xit). If a base station serves at least one
location in a time interval, that base station should not

switch off in this time interval. Inequality 13 defines

this relation.

As we mentioned before, the base stations in a HE-

BRAN can be supplied from a renewable energy source

and the on-grid energy source at the same time. The ra-

tio of the energy consumption between these two sources

is determined by the renewable energy ratio variable
(rit), which is formulated in Inequality 14 and Inequal-

ity 15. This value can be maximum one, which means

that a base station consumes only renewable energy in

this time interval. However, assuming that if the re-
newable energy of a base station Ri(t) is not enough to

supply the energy consumption of this base station (aEi )

in the duration of a time interval t, the renewable en-

ergy consumption and on-grid energy consumption will

be equal to the Ri(t) and aEi − Ri(t), respectively. In
this case the ratio of the renewable energy consumption

equals to Ri(t)

aE
i

.We assume that a base station always

prefers to consume the renewable energy over the on-
grid energy which is provided by Inequality 15. Since

the on-grid energy price does not change between the

time intervals in our scenario, this assumption does not

have a negative effect on minimizing the operational
expenditure.

3.2 The Complexity Analysis

This section briefly explains the NP-complete charac-

teristic of the problem. Let us consider a special case of

the problem in which the unit solar panel (cS) and the

unit battery (cB) are overpriced that deploying these
new equipments does not have any benefit to reduce the

TCO. Then the objective function can be simplified as

Equation 16, while the constraints 10 - 13 remain the

same for this specific scenario.

min

{

∑

i∈I

∑

t∈T

cEaEi xit

}

(16)

This problem is a best-known base station switch-
ing problem for any instance of time interval and it can

be reduced to the vertex cover problem [41,42]. There-

fore the problem in this paper is also an NP-complete

problem.

4 Proposed Algorithms for the Optimal Design

and Operation of a HEBRAN

In this section, we propose novel algorithms to solve the

NP-Complete problem explained in the previous sec-

tion. First we explain the framework that we use for

these algorithms, then give their details. As an alterna-
tive for our proposed algorithms, we create a reduced

model of the HEBRAN optimization problem to solve it

in a Mixed Integer Linear Programming (MILP) Solver,
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Gurobi [43]. We give the details of this solution in the

result section.

4.1 HEBRAN Framework

As we mentioned in the previous section, the solar pan-

els and the batteries are the main investment cost of

a mobile operator. The size of these new components

should be selected carefully to maximize the economic

benefits of the mobile operator. This problem is an of-
fline problem and should be solved before the installa-

tion of the panels and the batteries on the base stations.

On the other hand, the third component in the objec-

tive function (Equation 9) is related with the on-grid
energy consumption of the base stations. We may re-

duce this component by using the base station switch

on/off algorithms. However these algorithms depend on

the data traffic rates and harvesting solar energy by the

solar panels, which changes temporally and we can only
forecast their values. Therefore this problem is an on-

line decision problem and should be solved for each day

with new predicted data. Despite this, the decisions of

the offline problem (choosing the size of solar panels
and the batteries) directly changes the renewable en-

ergy ratio of the base stations which affects the results

of this online decision problem. This relation empha-

sizes that we have to create a framework, in which the

problem is decomposed into the two separate parts. In
the first part, we have to focus on an offline algorithm,

which aims to choose the size of the solar panels and

the batteries for the different traffic rates and harvest-

ing renewable energy rates. In the second part, we have
to focus on an online algorithm, which will run during

the operation of the system. In addition, we have to use

the output data that is created in a part as an input

data in the other part. Figure 8 illustrates this proposed

framework.

The harvested renewable energy varies in different

months (Figure 7) and investigating the effect of this

variation is one of the purposes of this study. Hence, a
HEBRAN operator module is in the core of this frame-

work and it is responsible to operate this network for

one year. For this purpose, this module begins with re-

ceiving the problem data that are generated with the
methods mentioned in Section 2. In the next step, the

module runs the system for one year with a switch

on/off algorithm. This algorithm makes decisions on

which base stations switch off in each time interval.

The algorithms used in this module is explained briefly
in Section 4.3. The module receives the decisions from

this algorithm and logs each time interval to calculate

the energy consumptions and expenditures which are

used by the system sizing algorithm (Section 4.2).

4.2 Sizing of Solar Panels and Batteries

As we explained in the previous section, deciding the

size of the solar panels and the batteries that reduce
the TCO of a HEBRAN is one of the main goal of our

framework. For this purpose we implemented an offline

sizing algorithm (Algorithm 1), in which we start with

the minimum size of solar panels and batteries. Then

we create a four-step decision loop that in the first and
third step we run the increasing size of solar panels al-

gorithm (ISSP, Algorithm 2), otherwise we run the in-

creasing size of batteries algorithm (ISB, Algorithm 3).

In this loop, we always start with running the system
for one year with the online algorithms (Section 4.3)

and calculating the TCO. Then we compare this value

with the TCO in the previous iteration. If the TCO

increases twice in a row, we switch the type of the in-

creasing algorithm. In addition, we also switch the type
of the increasing algorithm if one of the algorithms fails

to make a change in the size of panels or batteries which

means that it is not feasible to make any more incre-

mentation. Finally in each iteration, we record the siz-
ing configuration (Ŝitrt, B̂itrt) and after the breaking

of the loop, we return the sizing configuration of the

iteration that have the minimum TCO.

In the ISSP algorithm, first, we sort the base sta-

tions according to their energy consumption reduce-
ment potential (p̂ot) if we choose these base stations to

increase their panel size for the next iteration (Ŝitrt+1).

The criteria for this potential depends on the total en-

ergy consumption ( ˆtexp) and grid energy consumption
( ˆgexp) in these base stations in one year period. Then,

we limit the number of base stations that can be se-

lected to increase their solar panel size which reduces
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Algorithm 1 Sizing Solar Panels and Batteries

1: ˆTCO0 =∞, itrt = 0, step = 0, fail = 0
2: Ŝ0 = 1̂, B̂0 = 1̂

3: while step <= 3 do

4: ˆTCOitrt+1 ← Run the System for One Year

5: if ˆTCOitrt+1 > ˆTCOitrt then

6: fail = fail+ 1
7: if fail >= 2 then

8: fail = 0

9: step = step+ 1

10: end if

11: else

12: fail = 0

13: end if

14: new sizing = False

15: while new sizing = False do

16: if step=0 OR step=2 then

17: Ŝitrt+1 ← Run ISSP ALGORITHM

18: if Ŝitrt+1 = Ŝitrt then

19: step = step+ 1
20: else

21: new sizing=True

22: end if

23: end if

24: if step=1 OR step=3 then

25: B̂itrt+1 ← Run ISB ALGORITHM

26: if B̂itrt+1 = B̂itrt then

27: step = step+ 1

28: else

29: new sizing=True

30: end if

31: end if

32: end while

33: itrt = itrt+ 1
34: end while

35: return arg min
TCOitrt

(Ŝitrt, B̂itrt)

in each iteration. After this limitation, we check the

feasibility of the size incrementation by comparing the
reduction in the electricity price (operational expendi-

ture) and the increase in the price of solar panels (cap-

ital expenditure). In the last while loop, we also elimi-

nate the base stations which are close to each other and

we choose only the base stations which have better po-
tential to decrease the TCO. This elimination prevents

unnecessary solar panel incrementation at the base sta-

tions in a small area. On the other hand, in the next

iterations, in which we run the system with the new
size configuration (Ŝitrt+1), we can choose these elimi-

nated base stations, if these base stations sustain their

potential to decrease the TCO. The ISB algorithm is

Algorithm 2 ISSP Algorithm

1: Given: itrt, ˆtexpitrt, ˆgexpitrt, Ŝitrt

2: for all i ∈ I do

3: p̂ot
i
= 1

Ŝi
itrt

∗ ˆtexp
i

itrt

4: p̂ot
i
= min( ˆpot

i
, ˆgexpiitrt)

5: end for

6: p̂ot← sort(max(p̂ot))

7: max count = |I|/2− (itrt ∗ 4)
8: CLIST = ∅
9: for i := 1 to max count do

10: if p̂ot
i
∗ cE ∗ |T| ∗ 15 > cS then

11: CLIST = CLIST
⋃

{i}
12: else

13: break
14: end if

15: end for

16: mindist = 600

17: LIST = ∅
18: while CLIST 6= ∅ do
19: LIST = LIST

⋃

CLIST 0

20: for all i ∈ CLIST do

21: if dist(LIST−1, CLIST i) < mindist then

22: CLIST = CLIST \ CLISTi

23: end if

24: end for

25: end while

26: for all i ∈ I do

27: if i ∈ LIST then

28: Ŝi
itrt+1 = Ŝi

itrt + 1

29: else

30: Ŝi
itrt+1 = Ŝi

itrt

31: end if

32: end for

33: return Ŝitrt+1

very similar to the ISSP algorithm. However, the poten-

tial criteria in this algorithm depends on the unstored2

renewable energy ( ˆunstrditrt) in the batteries of base
stations at the previous iteration.

4.3 Base Station Switch On/Off Algorithms

The evidences show that base stations consume very

high amount of energy even if they do not provide a
service to any location [29]. This energy consumption

arises from non-traffic related operations such as cool-

ing the base station or running the baseband unit sub-

system. Therefore, either a load-balancing method or

2 The unstored energy is the harvested energy by a solar
panel but could not be stored in a battery due to fully charged
state of this battery.
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Algorithm 3 ISB Algorithm

1: Given: itrt, ˆunstrditrt, ˆgexpitrt, B̂itrt

2: for all i ∈ I do

3: p̂ot
i
= min( ˆunstrd

i

itrt, gexp
i
itrt)

4: end for

5: p̂ot← sort(max(p̂ot))
6: max count = |I|/2− (itrt ∗ 4)
7: LIST = ∅
8: for i := 1 to max count do

9: if p̂ot
i
∗ cE ∗ |T| ∗ 15 > cB then

10: LIST = LIST
⋃

{i}
11: else

12: break

13: end if

14: end for

15: for all i ∈ I do

16: if i ∈ LIST then

17: B̂i
itrt+1 = B̂i

itrt + 1

18: else

19: B̂i
itrt+1 = B̂i

itrt

20: end if

21: end for

22: return B̂itrt+1

a cell-breathing technique may not reduce the energy

consumption of a base station significantly. For that
reason, the online algorithms in this paper aim to com-

pletely switch off as many as possible base stations in

the network.

A major problem of a switch on/off algorithm ap-

pears on the prediction of the arriving traffic data. The
real traffic data from the study of Peng et al. [44] shows

that the traffic patterns of the consecutive days are sim-

ilar to each other, which means that using the traffic

data of the previous day is a good option for the arriv-
ing traffic data (Figure 4). Despite this, weekend days

have different traffic patterns, so it is better to use the

previous weekend traffic data for the weekends (Fig-

ure 5). In our online algorithms we adopt this method

to forecast the arriving traffic data for each day. As an
alternative forecasting method, a longer historical data

may be also collected to predict the arriving traffic data.

Peng et al. provide a formula for this purpose in their

paper [44]. Finding the best forecasting method is out
of the scope of this paper but it can be easily incorpo-

rated into our solution.

The online algorithms in this paper are running in

the core network. They start from an initial state as-

suming that each base station in the network switches
on to provide a service to any location and the locations

are assigned to the base station which provides the best

SNR value without violating the maximum utilization

value of this base station. This assumption is accept-

able for a typical RAN which does not use any energy-

efficiency method [5]. We should have noticed that these

algorithms run for each time interval separately and for

the sake of keeping the notation simple, we suppress the
time interval index t in these algorithms.

Algorithm 4 Battery-aware Algorithm

1: Given: Uj , Sij , zij , Ri, ∀i ∈ I, ∀j ∈ J
2: Calculate Wij = Uj/Sij , ∀i ∈ I, ∀j ∈ J
3: Ia = I
4: Is = sort(argmin

i∈I
(Ri))

5: while Is 6= ∅ do
6: zPij = zij , ∀i ∈ I, ∀j ∈ J
7: Li =

∑

j∈J

Wij ∗ zij , ∀i ∈ I

8: Ia = Ia \ Is1
9: JIs

1 = ∅
10: for all j ∈ J do

11: if zIs
1
j = 1 then

12: JIs
1 = JIs

1

⋃

{j}
13: zIs

1
j = 0

14: end if

15: end for

16: for all j ∈ JIs
1 do

17: Ij = sort(argmin
i∈I

(Wij))

18: for all i ∈ Ij do

19: LN
i = Li +Wij

20: if LN
i ≤ ρ then

21: Li = LN
i

22: zij = 1

23: break

24: end if

25: end for

26: end for

27: if zij = ∅, ∃j ∈ JIs
1 , ∀i ∈ Ia then

28: zij = zPij , ∀i ∈ I, ∀j ∈ J
29: Ia = Ia

⋃

Is1
30: end if

31: Is = Is \ Is1
32: end while

In the first algorithm, we aim to switch off the base

stations which have the lower renewable energy stored

in their battery (Ri). There are two main energy-efficient
benefits in this decision. First, these base stations can

increase their stored renewable energy in their battery

in the current time interval; thus, the ratio of electri-

cal grid energy usage in these base stations reduces in
the following time intervals. Second, the other base sta-

tions, which have more renewable energy in their bat-

teries, can spend their renewable energy in the current
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time interval. Therefore, the probability of the fully

charged batteries, which means that we could not store

the renewable energy in these batteries, can reduce by

activating the base stations which have less reserve ca-

pacity in their battery. (Algorithm 4).

Algorithm 5 Hybrid Algorithm

1: Given: Uj, Sij , zij , Ri, ∀i ∈ I, ∀j ∈ J
2: Calculate Wij = Uj/Sij , ∀i ∈ I, ∀j ∈ J
3: Ia = I
4: Li =

∑

j∈J

Wij ∗ zij , ∀i ∈ I

5: Is = sort(argmin
i∈I

(Ri + αLi))

6: while Is 6= ∅ do
7: zPij = zij , ∀i ∈ I, ∀j ∈ J
8: Ia = Ia \ Is1
9: JIs

1 = ∅
10: for all j ∈ J do

11: if zIs
1
j = 1 then

12: JIs
1 = JIs

1

⋃

{j}
13: zIs

1
j = 0

14: end if

15: end for

16: for all j ∈ JIs
1 do

17: Ij = sort(argmin
i∈I

(Wij))

18: for all i ∈ Ij do

19: LN
i = Li +Wij

20: if LN
i ≤ ρ then

21: Li = LN
i

22: zij = 1

23: break

24: end if

25: end for

26: end for

27: if zij = ∅, ∃j ∈ JIs
1 , ∀i ∈ Ia then

28: zij = zPij , ∀i ∈ I, ∀j ∈ J
29: Ia = Ia

⋃

Is1
30: end if

31: Is = Is \ Is1
32: Li =

∑

j∈J

Wij ∗ zij , ∀i ∈ I

33: end while

The algorithm starts by calculating the additional

system load on a base station if a location is assigned
to it (Wij). Then, it initialize the active base station set

(Ia), which includes all the base stations of the network.

Next, the algorithm orders the base stations (sorted

set IS) by considering the renewable energy stored in
their batteries. The order is from the lowest one to the

highest one. Finally, the algorithm starts to operate a

three-step iteration on this sorted set.
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Fig. 9 Assignment Decisions of Hybrid Algorithm for Dif-
ferent Time Intervals.

In the first step of the iteration, the algorithm takes

a snapshot of the current zPij assignment, calculate the

current system load (Li) in each base station, switches

off the first base station in the sorted set (Is1) and cre-
ates an orphaned location set JIs

1 which includes the

locations that are previously assigned to this switched

off base station. In the second step, the algorithm tries

to assign these locations to the other base stations in
the network without violating the capacity constraints

(Equation 11). This assignment effort is iterated on

each active base station (Ia) until a base station is

found to assign this location. The order starts from the

base station which gets the lowest traffic load from this
location. In the third step, the algorithm checks the re-

sult of the second step and if any uncovered location

cannot be assigned to one of the active base stations, it

returns the configuration of the network in the begin-
ning of this iteration. This algorithm stops when the

sorted set IS becomes empty. At the end, the algo-

rithm provides a set of base stations which have the

highest amount of renewable energy in their battery.

In the following time interval, these base stations stay
in the active mode and can consume the renewable en-

ergy from their batteries which have higher amount of

energy than the batteries at switched off base stations.

The second algorithm called hybrid also considers
traffic rates in addition to the battery status. To imple-

ment this new adaptation, we have to make two changes

in Algorithm 4. First, the algorithm orders the base sta-
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Fig. 10 The Distribution of Base Stations in Different Traffic
Rates. Triangles: Macro Base Stations, Circles: Micro Base
Stations

Table 2 Test Configurations

Traffic Rate # BS Solar Radiation (kW/year)

Sparse 34 Stockholm 986
Normal 67 Istanbul 1349

Dense 102 Jakarta 1359

High Dense 134 Cairo 1748

tions according to a new parameter which is a combi-

nation of the remaining renewable energy (Ri) in the

batteries and the system load of a base station Li. Sec-

ond, since the system loads of the base stations change
after each switch off decision, the algorithm orders the

base stations in each iteration (Algorithm 5). Figure 9

shows the results of this algorithm for some selected

time intervals.

5 Computational Experiments

The performance of algorithms are investigated in a

9km2 geographical area that is covered by the several
macro and micro base stations. The number of the base

stations on an area depends on the traffic rate in this

area and we repeat the tests for four different traffic

rates (Figure 10). In addition, Figure 6 and Figure 7

show the harvested energy distribution of four different
cities we use in the tests to analyze the effect of the solar

radiation on our algorithms. In overall, sixteen different

combinations were run on this platform (Table 2). The

system used in this analysis is detailed in Section 2.
Table 3 shows the test parameters for energy con-

sumptions and the prices of the system. Auer et al. [29]

calculate the value 1350W/h and 144.6W/h for the en-

Table 3 Parameters for Energy Consumptions & Prices

Explanation Not. Value

Energy Cons. of Macro BSs aEi 1350 W/h

Energy Cons. of Micro BSs aEi 144.6 W/h

Unit Cost of a Solar Panel cS 1000$

Unit Cost of a Battery cB 500$
Unit Cost of Electricity cE 0.16$
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Fig. 11 The Performance of Online Algorithms in Different
Solar Radiation Levels and Traffic Rates

ergy consumption of a macro base station and a micro
base station, respectively. We use these values as our

base stations energy consumption (aEi ) in full trans-

mission power. In addition, the base stations need to

consume energy in the sleep mode for some facilities.

This energy consumption does not have any effect on
the performance of the algorithms, thus it is omitted in

this platform.

The system in this paper is expected to operate in

the years between 2020 and 2035. Therefore, the price
of expenditure costs are calculated for 2020, in which

the price of a solar panel is projected to drop to 1$ per

Watt/hour [45] and the price of a lithium-ion battery

is expected to drop 0.2$ per Watt/hour [36,39]. Lastly,
the price of grid electricity is the average price between

the 2020 and 2035, in which we also consider the in-

creasing of the price 4% per annum according to [46].

The channel model for macro and micro base sta-

tions are chosen as Urban-Macro (UMa) and Urban-

Micro (UMi) NLOS cell scenarios from the ITU-R Re-

port [27]. The value of parameters used to calculate the

path loss are listed in Table 4.

One of the main goals of our design is to find an

online algorithm to reduce the electrical grid energy
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Table 4 The Channel Model Parameters

Explanation Not. Value

The Carrier Frequency fc 1.9 GHz

The Channel Bandwidth B 20 MHz

Street Width W 20 m

Avg. Build Height h 20 m

Base Station Height hbs 20 m
User Equipment Height hUT 1.5 m

Tx Power of Macro BSs PT
i 20 W

Tx Power of Micro BSs PT
i 6.7 W
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Fig. 12 Comparison of Online Algorithms in Different Con-
figurations.

consumption cost. For this purpose we proposed two
algorithms in the previous section. We compare these

two algorithms with a well-known switch on/off algo-

rithm proposed by Niu et al. [47]. The main idea of

this algorithm is to switch off as many base stations as
possible based on their traffic loads. Figure 11 shows

the performance of the algorithms in different test con-

figurations 3. A number of issues can be identified by

this figure. First, the TCO of the system sharply drops

with the increasing solar radiation. This is a noticeable
result, the more solar radiation provides the more re-

newable energy generation and yields the lower on-grid

energy consumption. Second, the normalized TCO of

the system, which is the cost of the system to serve
each megabit in one kilometer-square per day, remark-

ably decrease with the rising traffic rates. This finding

provides an important support on using renewable en-

ergy sources in urban sectors, in contrast to the com-

3 We should noticed that the size of the solar panels and
the batteries in this figure are the best configuration of the
sizing heuristic algorithm.
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Fig. 13 Comparison of Online Algorithms in a Day Period
(Istanbul - Sparse Traffic).
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Fig. 14 Comparison of Online Algorithms in a Year Period
(Istanbul - Sparse Traffic).

mon tendency of using renewable energy sources in ru-

ral sectors. Lastly, all of the online algorithms perform
better than the grid system in any traffic rate and so-

lar radiation combinations except the sparse traffic in

Stockholm with battery-aware algorithm. This result

shows that investing on a HEBRAN is cost-efficient for

different cities around the world which have different
traffic rates and solar radiations.

If we now focus on the comparison of the algorithms,
for each solar radiation and traffic rate, the hybrid algo-

rithm is far better than the other two online algorithms.

Figure 12, which shows the nominal expenditure of our
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two algorithms according to the Niu et al. algorithm

(traffic-aware algorithm), demonstrates that the hybrid

algorithm outperforms the Niu et al. algorithm in any

test cases at the range from 10% to 30%. While this su-

perior performance is not significantly change with the
increasing solar radiation, it gradually increases accord-

ing to the raising traffic rates. This result yields that

our novel algorithm further boosts the idea of using the

renewable energy in crowded urban regions.

Turning now to the performance of the battery-

aware algorithm, Figure 12 provides two important find-

ings. First, despite the improving performance in higher

traffic rates, it could not reach the performance of the
standard and hybrid algorithms. That poor performance

can be seen in Figure 13 which shows that this algo-

rithm have higher ratio of switched-on base stations

during a day period, which address that the base sta-

tions operated with this algorithm could not adapt to
the traffic loads efficiently. Second, the battery-aware

algorithm provides better performance in the cities that

receive more steady solar radiation in different months.

The main reason of this result can be demonstrated in
Figure 14. The top subfigure (Fig. 14a) shows that the

variation of the number of switched on base stations be-

tween different months is significantly high (more than

20%) for the battery-aware algorithm, which means that

the battery-aware algorithm is more fragile for the change
of solar radiation. The subfigure below (Fig. 14b) shows

that in the summer months, the battery-aware algo-

rithm reduces the unstored energy significantly, which

is the main benefit of this algorithm, as we mentioned
earlier. In overall, battery-aware algorithm yields some

cost benefits due to the efficient battery usage, but it

has a lack of adaptation to the changes in solar radia-

tion and traffic rates. To sum up, our hybrid algorithm

provides a balance between the adaption to the traf-
fic fluctations and battery utilization, thus it provides

better results to reduce the TCO.

To investigate the performance of our sizing heuris-

tic algorithm, first we compare it with the results of
a Mixed Integer Linear Programming (MILP) Solver,

Gurobi [43]. As mentioned in Section 2.5.2 time-coupling

property of the original model prevents us to solve it in

a MILP Solver. Therefore, we have to use a reduced

model in the MILP Solver, in which the base stations
should have used their remained renewable energy in

a day period. In addition, we have to reduce the num-

ber of the time intervals to the 96 (4 days, by using

the average solar radiation rates and the traffic rates
in a season) to find a solution in a reasonable time in

GUROBI. Finally, we run the solver for 14 hours to

compare it with our heuristic which find the solution in
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Fig. 15 Comparison of the TCO in our heuristic with a
MILP Solver (Gurobi).
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Fig. 16 Comparison of the TCO in Different Solar Radia-
tions.

less than 30 minutes in the same computer4. Figure 15

shows that we can come up with better solutions for all

instances we studied5.

Our sizing heuristic also outperforms the systems
with the same size solar panels and batteries in any so-

lar radiations rate (Figure 16) and the traffic rate (Fig-

4 We should have noticed that all test cases have been ex-
ecuted on a computer with an Intel Xeon E3-1270 Quadcore
3.6GHz processor and 16GB of memory.
5 As it was mentioned before, the hybrid algorithm out-

performs the other two algorithm in any test case. Therefore
we demonstrates only the sizing results that use the hybrid
algorithm as an online algorithm.
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Fig. 17 Comparison of the TCO in Different Traffic Rates.

ure 17). Those results can encourage the MNOs employ

our heuristic with the historical solar radiation and traf-

fic data to decide on the size of solar panels and the size

of batteries to reduce their TCO. On the other hand,

these two figures provide us valuable information about
the correlation between the size of solar panels and

cities/traffic rates. For example in Stockholm, where

the solar radiation rate is very low and its variation is

very high (Figure 7), the smaller solar panels provides
more profit to a MNO (Figure 16). However, we could

not find a strong correlation between the increasing so-

lar radiation and the solar panel sizes, if we compare

the results of the other cities. Another result is that the

smaller solar panels are more cost-efficient in the test
cases that have higher traffic rates. The main reason

of this outcome is the higher amount of base stations

in these sectors, thereby increasing of capital expendi-

ture. This result can be seen more easily in Figure 17,
which shows the TCO according to the mean values6 of

four cities. In the subfigures below (higher traffic rates),

the offsets between the consecutive solar panel sizes are

larger than the top subfigures, which means that the

reducing amount of the operational expenditure could
not compensate by the increasing amount of the capital

expenditure in the higher traffic rates.

6 Conclusion

Increasing electrical energy costs enforces the mobile

network industry to focus on energy efficient solutions.

6 Therefore we can bypass the effect of solar radiation rate
on the results.

In addition, reducing the carbon emission rates is an

emerging issue for RANs. In this paper, we describe a

new type of RAN, in which the base stations in this

network have a connection to the electrical grid and

they have their own solar panel and battery. We formu-
late an optimization problem which aims to reduce the

TCO in this network and propose a framework for the

solution. In our solution, we describe several algorithms

that target to find both the ideal solar panel and bat-
tery sizes in the base stations and the ideal schedules

for these base stations to reduce the electrical grid cost

of the MNO.

The results show that our sizing algorithm is more

cost-efficient than the MILP solver in all cases we stud-
ied. This algorithm also outperforms the systems in

which the size of solar panels and batteries are iden-

tical. Our hybrid switch on/off algorithm manages the

renewable energy in the batteries of the base stations
in an efficient way and get benefits from the data traffic

variation in a RAN to reduce the on-grid electricity. In-

terestingly, the results show that a HEBRAN provides

better results with the increasing traffic rates. In con-

clusion, our framework and proposed algorithms reduce
the TCO and provide an environmental network; thus,

they support the usage of the renewable energy sources

by a MNO especially in an urban sector of a city.

As a future work, we are planning to adopt more de-
tailed cost and renewable energy system models to our

framework. In addition, we will remodel our problem

and find the solutions to reduce the carbon emission

rates in a HEBRAN. Lastly, our framework and algo-

rithms may be migrated to the next generation RAN
architectures such as a Hybrid-CRAN. Splitting the

digital units between the different levels of a Hybrid-

CRAN is investigated broadly for bandwidth-efficiency

and delay-efficiency in recent years. However, using the
renewable energy systems cost-efficiently in this archi-

tecture is an open issue and finding a solution can re-

duce the TCO of a MNO.
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