Skip to main content
Log in

A robust distance-based relay selection for message dissemination in vehicular network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The relay-node selection plays a decisive impact on the message dissemination in vehicular network. However, in some scenarios, due to lack of the reliable and stable relay-node selection, the message dissemination suffers from an intolerable delay, even a failure. In this paper, we focus on a design of the robust relay selection, which aims at (1) achieving a maximum message dissemination speed in general scenarios, and (2) assuring an acceptable dissemination speed in the adverse scenario. Two adverse scenarios are first introduced for the message dissemination when the distance-based relay selection is applied in multi-hop broadcast. To tackle the challenge, we propose a robust distance-based relay selection by optimizing the exponent-based partitioning broadcast protocol (our previous work) and incorporating a proposed mini-black-burst-assisted mechanism. Moreover, we develop analytic models for the robust approach performances in terms of contention latency and packet delivery ratio (PDR). Simulations are used to verify these analytic models, demonstrate the acceptable performances of the proposal in adverse scenarios, and compare it with the state-of-the-art approaches in general scenarios. Results show an increase of more than 11.01% in terms of message dissemination speed independent of vehicle density and a stable PDR of more than 99.99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maglaras, L. A., Al-Bayatti, A. H., He, Ying, Wagner, I., & Janicke, H. (2016). Social internet of vehicles for smart cities. Journal of Sensor and Actuator Networks, 5(1), 3.

    Article  Google Scholar 

  2. Bitam, S., Mellouk, A., & Zeadally, S. (2015). Bio-inspired routing algorithms survey for vehicular ad hoc networks. IEEE Communications Surveys and Tutorials, 17(2), 843–867.

    Article  Google Scholar 

  3. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys and Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  4. Rehman, S. U., Khan, M. A., & Zia, T. A. (2015). A multi-hop cross layer decision based routing for vanets. Wireless Networks, 21(5), 1647–1660.

    Article  Google Scholar 

  5. Ji, B., Song, K., Zhu, J., & Li, W. (2014). Efficient mac protocol design and performance analysis for dense wlans. Wireless Networks, 20(8), 2237–2254.

    Article  Google Scholar 

  6. Zhao, N., Yu, F. R., Sun, H., Yin, H., & Nallanathan, A. (2015). Interference alignment with delayed channel state information and dynamic ar-model channel prediction in wireless networks. Wireless Networks, 21(4), 1227–1242.

    Article  Google Scholar 

  7. Zheng, K., Zheng, Q., Chatzimisios, P., Xiang, W., & Zhou, Y. (2015). Heterogeneous vehicular networking: A survey on architecture, challenges, and solutions. IEEE Communications Surveys and Tutorials, 17(4), 2377–2396.

    Article  Google Scholar 

  8. Long, M., Chen, Y., & Renzo, M. D. (2014). Performance analysis of relay selection in the presence of on Coff relay traffic. IEEE Transactions on Vehicular Technology, 63(6), 2959–2964.

    Article  Google Scholar 

  9. Ma, X., Zhang, J., Yin, X., & Trivedi, K. S. (2012). Design and analysis of a robust broadcast scheme for vanet safety-related services. IEEE Transactions on Vehicular Technology, 61(1), 46–61.

    Article  Google Scholar 

  10. Jabbarpour, M. R., Jalooli, A., Shaghaghi, E., Marefat, A., Noor, R. M., & Jung, J. J. (2014). Analyzing the impacts of velocity and density on intelligent position-based routing protocols. Journal of Computational Science, 11(2), 177–184.

    Google Scholar 

  11. Fogue, M., Garrido, P., Martinez, F. J., Cano, J. C., Calafate, C. T., & Manzoni, P. (2013). Identifying the key factors affecting warning message dissemination in vanet real urban scenarios. Sensors, 13(4), 5220.

    Article  Google Scholar 

  12. Cao, D., Lei, Z., Baofeng, J. I., & Chunguo, L. I. (2016). Exponent-based partitioning broadcast protocol for emergency message dissemination in vehicular networks. IEICE Transactions on Fundamentals, E99.A(11), 2075–2083.

    Article  Google Scholar 

  13. Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36(2), 685C697.

    Article  Google Scholar 

  14. Sahoo, J., Wu, H. K., Sahu, P. K., & Gerla, M. (2011). Binary-partition-assisted mac-layer broadcast for emergency message dissemination in vanets. IEEE Transactions on Intelligent Transportation Systems, 12(3), 757–770.

    Article  Google Scholar 

  15. Suthaputchakun, C., Dianati, M., & Sun, Z. (2014). Trinary partitioned black-burst-based broadcast protocol for time-critical emergency message dissemination in vanets. IEEE Transactions on Vehicular Technology, 63(6), 2926–2940.

    Article  Google Scholar 

  16. Ni, S. Y., Tseng, Y. C., Chen, Y. S., & Sheu, J. P. (1999). The broadcast storm problem in a mobile ad hoc network. ACM/IEEE International Conference on Mobile Computing and Networking, 8, 151–162.

    MATH  Google Scholar 

  17. Korkmaz, G., Ekici, E., & Ozguner, F. (2007). Black-burst-based multihop broadcast protocols for vehicular networks. IEEE Transactions on Vehicular Technology, 56(5), 3159–3167.

    Article  Google Scholar 

  18. Bi, Y., Zhao, H., & Shen, X. (2009). A directional broadcast protocol for emergency message exchange in inter-vehicle communications. In IEEE International conference on communications (pp. 1-5). IEEE.

  19. Salvo, P., De Felice, M., Baiocchi, A., Cuomo, F., & Rubin, I. (2013). Timer-based distributed dissemination protocols for VANETs and their interaction with MAC layer. In Vehicular technology conference (Vol. 14, pp. 1–6). IEEE.

  20. Sobrinho, J. L., & Krishnakumar, A. S. (1996). Distributed multiple access procedures to provide voice communications over IEEE 802.11 wireless networks. In Proceedings of the GLOBECOM’96, London, UK (pp. 1689–1694).

  21. Tian, D., Zhou, J., Wang, Y., Zhang, G., & Xia, H. (2015). An adaptive vehicular epidemic routing method based on attractor selection model. Ad Hoc Networks, 36(P2), 465–481.

    Google Scholar 

  22. Baiocchi, A., Salvo, P., Cuomo, F., & Rubin, I. (2016). Understanding spurious message forwarding in vanet beaconless dissemination protocols: An analytical approach. IEEE Transactions on Vehicular Technology, 65(4), 2243–2258.

    Article  Google Scholar 

  23. Tables of Speed and Stopping Distances, the State of Virginia [Online]. (2018). https://law.lis.virginia.gov/vacode/46.2-880/. Accessed April 12 2018.

  24. Regulations for the Implementation of the Road Traffic Safety Law in People’s Republic of China [Online]. (2018). http://www.gov.cn/banshi/2005-08/23/content_25579_3.htm. Accessed April 12 2018.

  25. Moral, P. D., Doucet, A., & Jasra, A. (2006). Sequential monte carlo samplers. Journal of the Royal Statistical Society, 68(3), 411–436.

    Article  MathSciNet  Google Scholar 

  26. Reis, A. B., Sargento, S., Neves, F., & Tonguz, O. K. (2014). Deploying roadside units in sparse vehicular networks: What really works and what does not. IEEE Transactions on Vehicular Technology, 63(6), 2794–2806.

    Article  Google Scholar 

  27. Shah, V., Mehta, N. B., & Yim, R. (2009). Optimal timer based selection schemes. IEEE Transactions on Communications, 58(6), 1814–1823.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their helpful comments and the National Natural Science Foundation of China (Grant Nos. 51675059, 51408069, 61702052 and U1404615), Open Funds of State Key Laboratory of Millimeter Waves (Grant No. K201504), China Postdoctoral Science Foundation (Grant No. 2015M571637), and Science and Technology Project of Hunan Province (Grant No. 2015JC3057) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun Cao.

Appendix: Optimization of EPBP

Appendix: Optimization of EPBP

This section provides the optimization of EPBP with A. As mentioned in Sect. 4.1, we determine the optimal value \({A_{{\mathrm{opt}}}}\) of A to maximize the average message dissemination speed \({v_{{\mathrm{ave}}}}\) when \(N_{{\mathrm{iter}}}=1\). \({A_{{\mathrm{opt}}}}\) can be derived in the following equation,

$$\begin{aligned} \sum \limits _{i = 1}^{{N_\lambda }} {\left( {\frac{1}{{{T_{{\mathrm{d,}}i}}}}\frac{{{\mathrm{d}} {\beta _i}}}{{{\mathrm{d}} {A_{{\mathrm{opt}}}}}} - \frac{{{\beta _i}}}{{T_{{\mathrm{d,}}i}^2}}\frac{{{\mathrm{d}} {T_{{\mathrm{d,}}i}}}}{{{\mathrm{d}} {A_{{\mathrm{opt}}}}}}} \right) } = 0. \end{aligned}$$
(26)

The index i of the i-th vehicle density \({\lambda _i}\) for all metrics is omitted for simple presentation.

1.1 Message progress \(\beta \)

\(\beta \) can be attained as

$$\begin{aligned} \beta = \sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {{M_k}{P_{{\mathrm{seg\_sel}}}}\left( k \right) } \end{aligned}$$
(27)

where

$$\begin{aligned} {M_k} = \sum \limits _{n = k + 1}^{{N_{{\mathrm{part}}}}} {{W_{{\mathrm{seg}}}}(n)} + {W_{{\mathrm{seg}}}}(k)/2 \end{aligned}$$
(28)

is the average message progress if the k-th segment is the final segment, and

$$\begin{aligned} {P_{{\mathrm{seg\_sel}}}}\left( k \right) = {e^{ - {\mu _{{\mathrm{seg\_bro}}}}(k)}}(1 - {e^{ - {\mu _k}}}) \end{aligned}$$
(29)

is the probability of the selection of the k-th segment. \({\mu _{{\mathrm{seg\_bro}}}}(k)\) in (29) is the vehicle number in other segments in the message broadcasting direction of the k-th segment, which can be achieved as

$$\begin{aligned} {\mu _{{\mathrm{seg\_bro}}}}(k)= \lambda R\sum \limits _{n =1}^{k-1} {{W_{{\mathrm{seg}}}}({N_{{\mathrm{iter}}}},n)} \end{aligned}$$
(30)

1.2 One-hop delay \({T_{\mathrm{d}}}\)

\({T_{\mathrm{d}}}\) can be attained as

$$\begin{aligned} {T_{\mathrm{d}}} = {T_{{\mathrm{init}}}} + {T_{{\mathrm{part}}}} + {T_{{\mathrm{cont}}}} + {T_{{\mathrm{data}}}} \end{aligned}$$
(31)

where \({T_{{\mathrm{init}}}}\), \({T_{{\mathrm{part}}}}\), \({T_{{\mathrm{cont}}}}\) and \({T_{{\mathrm{data}}}}\) are the initial latency, the partitioning latency, the contention latency and the data transmission latency, respectively. Among the four latencies, the selection of A can affect the value of \({T_{{\mathrm{part}}}}\) and \({T_{{\mathrm{cont}}}}\). They can be attained as

$$\begin{aligned}&{T_{{\mathrm{part}}}} = {T_{{\mathrm{slot}}}}\left( {1 + \sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {{N_{{\mathrm{P}\_\mathrm{slot}}}}\left( k \right) {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) } } \right) \end{aligned}$$
(32)
$$\begin{aligned}&{T_{{\mathrm{cont}}}} = \sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {{T_{{\mathrm{cont}\_\mathrm{seg}}}}\left( k \right) {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) } \end{aligned}$$
(33)

where

$$ N_{{{\text{P}}\_{\text{slot}}}} \left( k \right) = \left\{ {\begin{array}{*{20}l} {k\,\bmod \,N_{{{\text{part}}}} \left( {k\,\bmod \,N_{{{\text{part}}}} } \right) < N_{{{\text{part}}}} } \hfill \\ {N_{{{\text{part}}}} - 1\left( {k\,\bmod \,N_{{{\text{part}}}} } \right) = N_{{{\text{part}}}} } \hfill \\ \end{array} } \right. $$
(34)

is the number of time slots spent when the k-th segment is selected. And

$$\begin{aligned} {T_{{\mathrm{cont}\_\mathrm{seg}}}}\left( k \right) = \left( {\frac{{1 - {e^{ - {\mu _k}p}}}}{{{\mu _k}p{e^{ - {\mu _k}p}}}} - 1} \right) {T_{{\mathrm{col}}}} + {T_{{\mathrm{suc}}}} \end{aligned}$$
(35)

is the average contention latency when the k-th segment is the final segment. It is noted that \({T_{{\mathrm{cont}\_\mathrm{seg}}}}\) in (35) differs from that in (16) since the exponential back-off timer isn’t adopted in the optimization here.

1.3 Expression of \(\frac{{{\mathrm{d}} \beta }}{{{\mathrm{d}} A}}\)

From (27), \(\frac{{{\mathrm{d}} \beta }}{{{\mathrm{d}} A}}\) in (26) can be achieved as

$$\begin{aligned} \frac{{{\mathrm{d}} \beta }}{{{\mathrm{d}} A}} = \sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {\left[ {{M_k}\frac{{{\mathrm{d}} {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) }}{{{\mathrm{d}} A}} + {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) \frac{{{\mathrm{d}} {M_k}}}{{{\mathrm{d}} A}}} \right] } \end{aligned}$$
(36)

where

$$\begin{aligned} \frac{{{\mathrm{d}} {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) }}{{{\mathrm{d}} A}}&= {} {e^{ - {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k)}}{e^{ - {\mu _k}}}\frac{{{\mathrm{d}} {\mu _k}}}{{{\mathrm{d}} A}} \nonumber \\&- {e^{ - {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k)}}(1 - {e^{ - {\mu _k}}})\frac{{{\mathrm{d}} {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k)}}{{{\mathrm{d}} A}} \end{aligned}$$
(37)
$$\begin{aligned} \frac{{{\mathrm{d}} {M_k}}}{{{\mathrm{d}} A}}= & {} \frac{1}{{2{A^2}}}{\left( \left( {{{(1 + A)}^{\frac{{k - 1}}{{{N_{{\mathrm{part}}}}}}}} + {{(1 + A)}^{\frac{k}{{{N_{{\mathrm{part}}}}}}}}}\right) - \frac{A}{{(1 + A)}}\right. } \nonumber \\&\left( {\left. {\frac{{k - 1}}{{{N_{{\mathrm{part}}}}}}{{(1 + A)}^{\frac{{k - 1}}{{{N_{{\mathrm{part}}}}}}}} + \frac{k}{{{N_{{\mathrm{part}}}}}}{{(1 + A)}^{\frac{k}{{{N_{{\mathrm{part}}}}}}}}} \right) } \right) - \frac{1}{{{A^2}}} \end{aligned}$$
(38)

In (37),

$$\begin{aligned} \frac{{{\mathrm{d}} {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k)}}{{{\mathrm{d}} A}} = \frac{{\lambda R}}{{{A^2}}}\left( {\frac{{k - 1}}{{{N_{{\mathrm{part}}}}}}A{{(1 + A)}^{\frac{{k - 1 - {N_{{\mathrm{part}}}}}}{{{N_{{\mathrm{part}}}}}}}} - {{(1 + A)}^{\frac{{k - 1}}{{{N_{{\mathrm{part}}}}}}}} + 1} \right) , \end{aligned}$$
(39)

and

$$\begin{aligned} \frac{{{\mathrm{d}} {\mu _k}}}{{{\mathrm{d}} A}} = \frac{{{\mathrm{d}} {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k + 1)}}{{{\mathrm{d}} A}} - \frac{{{\mathrm{d}} {\mu _{{\mathrm{seg}\_\mathrm{bro}}}}(k)}}{{{\mathrm{d}} A}}. \end{aligned}$$
(40)

1.4 Expression of \(\frac{{{\mathrm{d}} {T_{\mathrm{d}}}}}{{{\mathrm{d}} A}}\)

From (31), \(\frac{{{\mathrm{d}} {T_{\mathrm{d}}}}}{{{\mathrm{d}} A}}\) in (26) can be achieved as

$$\begin{aligned} \frac{{{\mathrm{d}} {T_{\mathrm{d}}}}}{{{\mathrm{d}} A}} = \frac{{{\mathrm{d}} {T_{{\mathrm{part}}}}}}{{{\mathrm{d}} A}} + \frac{{{\mathrm{d}} {T_{{\mathrm{cont}}}}}}{{{\mathrm{d}} A}} \end{aligned}$$
(41)

where

$$\begin{aligned} \frac{{{\mathrm{d}} {T_{{\mathrm{part}}}}}}{{{\mathrm{d}} A}}= & {} {T_{{\mathrm{slot}}}}\sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {{N_{{\mathrm{P}\_\mathrm{slot}}}}\left( k \right) \frac{{{\mathrm{d}} {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) }}{{{\mathrm{d}} A}}}\end{aligned}$$
(42)
$$\begin{aligned} \frac{{{\mathrm{d}} {T_{{\mathrm{cont}}}}}}{{{\mathrm{d}} A}}= & {} \sum \limits _{k = 1}^{{N_{{\mathrm{part}}}}} {\left( {{T_{{\mathrm{cont}\_\mathrm{seg}}}}\left( k \right) \frac{{{\mathrm{d}} {P_{{\mathrm{seg\_sel}}}}\left( k \right) }}{{{\mathrm{d}} A}} }\right. }\nonumber \\&+{\left. { {P_{{\mathrm{seg}\_\mathrm{sel}}}}\left( k \right) {T_{{\mathrm{col}}}}\frac{{\mathrm{d}} }{{{\mathrm{d}} A}}\left( {\frac{{1 - {e^{ - {\mu _k}p}}}}{{{\mu _k}p{e^{ - {\mu _k}p}}}}} \right) } \right) }. \end{aligned}$$
(43)

In (43),

$$\begin{aligned} \frac{{\mathrm{d}} }{{{\mathrm{d}} A}}\left( {\frac{{1 - {e^{ - {\mu _k}p}}}}{{{\mu _k}p{e^{ - {\mu _k}p}}}}} \right) = \frac{{{\mu _k}p + {e^{ - {\mu _k}p}} - 1}}{{\mu _k^2p{e^{ - {\mu _k}p}}}}\frac{{{\mathrm{d}} {\mu _k}}}{{{\mathrm{d}} A}}. \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Zheng, B., Ji, B. et al. A robust distance-based relay selection for message dissemination in vehicular network. Wireless Netw 26, 1755–1771 (2020). https://doi.org/10.1007/s11276-018-1863-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1863-4

Keywords

Navigation