Skip to main content
Log in

Better campus life for visually impaired University students: intelligent social walking system with beacon and assistive technologies

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Objective of this study is to introduce a novel, low-cost intelligent social walking path support system for visually impaired students in a wide campus area, by employing beacons, optimization based Artificial Intelligence techniques, Big Data support, and a system rising over Internet of Things. In detail, the developed system has been used within two connected campus areas of Suleyman Demirel University located in the city of Isparta in Turkey and an effective walking path support was ensured for enabling visually students to go target locations with instructions given by an intelligent system. In this way, it is also aimed to enable students to experience a better campus life. The study done here is unique with its Artificial Intelligence oriented characteristics ensuring an intelligent navigation control and planning system by benefiting from only interactions among beacons and mobile devices as not requiring to use physical road bumps, so lowering costs by eliminating both physical components and advanced communication systems. Also, other students’ data over social media environments are used as Big Data to support effective decisions taken by the system. After real implementation of the system, too much positive feedback was obtained from visually impaired students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown, R. L., Moloney, M. E., & Ciciurkaite, G. (2017). People with physical disabilities, work, and well-being: The importance of autonomous and creative work. In Factors in Studying Employment for Persons with Disability: How the Picture can Change (pp. 205–224). Emerald Publishing Limited.

  2. Lai, B., Young, H.-J., Bickel, C. S., Motl, R. W., & Rimmer, J. H. (2017). Current trends in exercise intervention research, technology, and behavioral change strategies for people with disabilities. American Journal of Physical Medicine and Rehabilitation, 96(10), 748–761.

    Article  Google Scholar 

  3. Rimmer, J. H., Riley, B., Wang, E., Rauworth, A., & Jurkowski, J. (2004). Physical activity participation among persons with disabilities: Barriers and facilitators. American Journal of Preventive Medicine, 26(5), 419–425.

    Article  Google Scholar 

  4. Evans, J. R., Fletcher, A. E., & Wormald, R. P. (2007). Depression and anxiety in visually impaired older people. Ophthalmology, 114(2), 283–288.

    Article  Google Scholar 

  5. Cox, S., Lincoln, M., Tryggvason, J., Nakisa, M., Wells, M., Tutt, M., & Abbott, S. (2002). Tessa, a system to aid communication with deaf people. In Proceedings of the fifth international acm conference on assistive technologies—Assets 02, 2002.

  6. Jiménez, J., Olea, J., Torres, J., Alonso, I., Harder, D., & Fischer, K. (2009). Biography of Louis Braille and invention of the Braille alphabet. Survey of Ophthalmology, 54(1), 142–149.

    Article  Google Scholar 

  7. Frey, B., Southern, C., & Romero, M. (2011). Brailletouch: mobile texting for the visually impaired. In C. Stephanidis (Ed.), International Conference on Universal Access in Human-Computer Interaction (pp. 19–25). Berlin, Heidelberg: Springer.

    Google Scholar 

  8. Helal, A., Moore, S. E., & Ramachandran, B. (2001). Drishti: An integrated navigation system for visually impaired and disabled. In Proceedings of the fifth international symposium on wearable computers, 2001 (pp. 149–156). IEEE.

  9. Tsirmpas, C., Rompas, A., Fokou, O., & Koutsouris, D. (2015). An indoor navigation system for visually impaired and elderly people based on radio frequency identification (RFID). Information Sciences, 320, 288–305.

    Article  Google Scholar 

  10. Balaji, C., & Marimuthu, M. I. (2017). An electronic stick guidance for visually impaired people navigation using audio system. International Journal of Engineering Science, 7(4), 6303.

    Google Scholar 

  11. Ahmetovic, D., Murata, M., Gleason, C., Brady, E., Takagi, H., Kitani, K., & Asakawa, C. (2017). Achieving practical and accurate indoor navigation for people with visual impairments. In Proceedings of the 14th web for all conference on the future of accessible work (p. 31). ACM.

  12. Nguyen, Q. H., Vu, H., Tran, T. H., & Nguyen, Q. H. (2017). Developing a way-finding system on mobile robot assisting visually impaired people in an indoor environment. Multimedia Tools and Applications, 76(2), 2645–2669.

    Article  Google Scholar 

  13. Kesh, S. (2017). Shopping by blind people: Detection of interactions in ambient assisted living environments using RFID. International Journal of Wireless Communications and Networking Technologies, 6(2), 7–11.

    Google Scholar 

  14. Patil, L. J., Kolhe, N. V., Patil, P. R., & Mane, S. J. (2017). Smart shoes for blind people. International Journal of Engineering Science, 7(3), 6059.

    Google Scholar 

  15. Dhod, R., Singh, G., Singh, G., & Kaur, M. (2017). Low cost GPS and GSM based navigational aid for visually impaired people. Wireless Personal Communications, 92(4), 1575–1589.

    Article  Google Scholar 

  16. Lin, B. S., Lee, C. C., & Chiang, P. Y. (2017). Simple smartphone-based guiding system for visually impaired people. Sensors, 17(6), 1371.

    Article  Google Scholar 

  17. Gharani, P., & Karimi, H. A. (2017). Context-aware obstacle detection for navigation by visually impaired. Image and Vision Computing, 64, 103–115.

    Article  Google Scholar 

  18. Alam, M. M., Arefin, S. E., Al Alim, M., Adib, S. I., & Rahman, M. A. (2017). Indoor localization system for assisting visually impaired people. In International Conference on electrical, computer and communication engineering (ECCE) (pp. 333–338). IEEE.

  19. Nakajima, M., & Haruyama, S. (2013). New indoor navigation system for visually impaired people using visible light communication. EURASIP Journal on Wireless Communications and Networking, 2013(1), 37.

    Article  Google Scholar 

  20. Yelamarthi, K., Haas, D., Nielsen, D., & Mothersell, S. (2010). RFID and GPS integrated navigation system for the visually impaired. In 2010 53rd IEEE international midwest symposium on circuits and systems (MWSCAS) (pp. 1149–1152). IEEE.

  21. Bourbakis, N. G., & Kavraki, D. (2001). An intelligent assistant for navigation of visually impaired people. In Proceedings of the IEEE 2nd international symposium on bioinformatics and bioengineering conference, 2001 (pp. 230–235). IEEE.

  22. Xia, F., Yang, L. T., Wang, L., & Vinel, A. (2012). Internet of things. Internatinal Journal of Communication Systems, 25(9), 1101.

    Article  Google Scholar 

  23. Qiu, T., Chen, N., Li, K., Atiquzzaman, M., & Zhao, W. (2018). How can heterogeneous internet of things build our future: A survey. IEEE Communications Surveys & Tutorials, 20(3), 2011–2027.

    Article  Google Scholar 

  24. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

    Article  Google Scholar 

  25. Tsai, C. W., Lai, C. F., & Vasilakos, A. V. (2014). Future internet of things: Open issues and challenges. Wireless Networks, 20(8), 2201–2217.

    Article  Google Scholar 

  26. Kontakt.io. (2018). What is a Beacon?. Kontakt.io Web Site. Retrieved April 1, 2018, https://kontakt.io/beacon-basics/what-is-a-beacon/.

  27. Estimote.com. (2018). Estimote products. Estimote web site. Retrieved April 2, 2018, https://estimote.com/products/.

  28. Antevski, K., Redondi, A. E., & Pitic, R. (2016). A hybrid BLE and Wi-Fi localization system for the creation of study groups in smart libraries. In 2016 9th IFIP wireless and mobile networking conference (WMNC) (pp. 41–48). IEEE.

  29. Al-Kaisy, A., Miyake, G. T., Staszcuk, J., & Scharf, D. (2018). Motorists’ voluntary yielding of right of way at uncontrolled midblock crosswalks with rectangular rapid flashing beacons. Journal of Transportation Safety & Security, 10(4), 303–317.

    Article  Google Scholar 

  30. Glover, I., & McDonald, K. (2018). Digital places: location-based digital practices in higher education using Bluetooth Beacons. In EdMedia + Innovate Learning (pp. 950–959). Association for the Advancement of Computing in Education (AACE).

  31. Wang, Y., Vasilakos, A. V., Jin, Q., & Ma, J. (2014). Survey on mobile social networking in proximity (MSNP): Approaches, challenges and architecture. Wireless Networks, 20(6), 1295–1311.

    Article  Google Scholar 

  32. Estimote.com. (2018). How Does an Estimote Beacon Work?. Estimote Web Site. Retrieved April 2, 2018, https://community.estimote.com/hc/en-us/articles/204086423-How-does-an-Estimote-Beacon-work.

  33. Yegnanarayana, B. (2009). Artificial neural networks. Delhi: PHI Learn.

    Google Scholar 

  34. Mitchell, T. M. (1997). Artificial neural networks. Machine Learning, 45, 81–127.

    Google Scholar 

  35. Korte, B., Vygen, J., Korte, B., & Vygen, J. (2012). Combinatorial optimization (Vol. 2). Heidelberg: Springer.

    Book  Google Scholar 

  36. Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity. chelmsford: Courier Corporation.

    MATH  Google Scholar 

  37. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.

    Article  Google Scholar 

  38. Skiena, S. (1990). Dijkstra’s algorithm, implementing discrete mathematics: Combinatorics and graph theory with mathematica (pp. 225–227). Reading, MA: Addison-Wesley.

    Google Scholar 

  39. Noto, M., & Sato, H. (2000). A method for the shortest path search by extended Dijkstra algorithm, In 2000 IEEE International conference on systems, man, and cybernetics (Vol. 3, pp. 2316–2320). IEEE.

  40. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28–39.

    Article  Google Scholar 

  41. Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1–2), 71–79.

    Article  Google Scholar 

  42. Kose, U., & Arslan, A. (2016). Optimization with the idea of algorithmic reasoning. Journal of Multidisciplinary Developments, 1(1), 17–20.

    Google Scholar 

  43. Gonçalves, J. F., & Resende, M. G. (2011). Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics, 17(5), 487–525.

    Article  Google Scholar 

  44. Jarboui, B., Cheikh, M., Siarry, P., & Rebai, A. (2007). Combinatorial particle swarm optimization (CPSO) for partitional clustering problem. Applied Mathematics and Computation, 192(2), 337–345.

    Article  MathSciNet  Google Scholar 

  45. Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. London: Luniver Press.

    Google Scholar 

  46. Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Amsterdam: Elsevier.

    Google Scholar 

  47. Karaboga, D. (2014). Artificial intelligence optimization techniques. Edinburgh: Nobel Press. (In Turkish).

    Google Scholar 

  48. Girish, D. (2015). Will beacons replace RFID?. Beaconstac blog site. Retrieved August 20, 2018, https://blog.beaconstac.com/2015/11/will-beacons-replace-rfid/.

  49. Gaudlitz, E. (2016). Indoor tracking using beacons or RFID—what are the differences?. InfSoft.com web site. Retrieved August 20, 2018, https://www.infsoft.com/blog-en/articleid/60/indoor-tracking-using-beacons-or-rfid-what-are-the-differences.

  50. Hogan, N., & Lemus, C. (2018). Comparing internet of things (IoT)-based asset tracking technologies: RFID vs. BLE. Bastian solutions web site. Retrieved August 21, 2018, https://www.bastiansolutions.com/blog/index.php/2018/05/04/comparing-internet-of-things-iot-based-asset-tracking-technologies-rfid-vs-ble/.

  51. Kosir, D. (2016). Location-based technology for mobile apps: Beacons vs. GPS vs. WiFi. Clear Bridge Mobile.com Web Site. Retrieved August 21, 2018, https://clearbridgemobile.com/location-based-technology-for-mobile-apps-beacons-vs-gps-vs-wifi/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kose, U., Vasant, P. Better campus life for visually impaired University students: intelligent social walking system with beacon and assistive technologies. Wireless Netw 26, 4789–4803 (2020). https://doi.org/10.1007/s11276-018-1868-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1868-z

Keywords

Navigation