Skip to main content
Log in

Efficient measurement model for critical nodes based on edge clustering coefficients and edge betweenness

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Identifying critical nodes is vital for optimizing network structure and enhancing network robustness in complex networks. The concepts of edge betweenness and edge clustering coefficients are based on node betweenness and the node clustering coefficient. This paper proposes a new measurement model for critical nodes based on global features and local features, which considers the edge betweenness and edge clustering coefficients and combines the mutual influence between nodes and edges in a network. Subsequently, an algorithm based on the aforementioned model is proposed. The proposed algorithm is evaluated on the ARPA network, and it is proven to be effective in determining the importance of nodes. Another experiment is performed on a scale-free network, in which the accuracy of the algorithm is compared with other algorithms. Experimental results prove that the proposed algorithm is robust under deliberate attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics,74(1), 47–97.

    Article  MathSciNet  Google Scholar 

  2. Attia, M., Senouci, S. M., Sedjelmaci, H., Aglzim, E.-H., & Chrenko, D. (2018). An efficient intrusion detection system against cyber-physical attacks in the smart grid. Computers & Electrical Engineering,68, 499–512.

    Article  Google Scholar 

  3. Lü, L., Medo, M., Yeung, C. H., et al. (2012). Recommender systems. Physics Reports,519(1), 1–49.

    Article  Google Scholar 

  4. Zamanifar, A., Nazemi, E., & Vahidi-Asl, M. (2016). DMP-IOT: A distributed movement prediction scheme for IOT health-care applications. Computers & Electrical Engineering,58, 310–326.

    Article  Google Scholar 

  5. Yıldırım, M. A., Goh, K. I., Cusick, M. E., et al. (2007). Drug—Target network. Nature Biotechnology,25(10), 1119–1126.

    Article  Google Scholar 

  6. Konstantin, K., Ángeles, S. M., & San, M. M. (2012). A measure of individual role in collective dynamics. Scientific Reports,2(2), 292-1–292-8.

    Google Scholar 

  7. Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack robustness and centrality of complex networks. Plos One,8(4), e59613-1–e59613-17.

    Article  Google Scholar 

  8. Zhao, J., Yu, L., Li, J. R., et al. (2015). Identifying influential nodes based on graph signal processing in complex networks. Chinese Physics B,24(5), 639–648.

    Google Scholar 

  9. Goh, K. I., Oh, E., Kahng, B., et al. (2003). Betweenness centrality correlation in social networks. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,67(2), 017101.

    Article  Google Scholar 

  10. Friedkin, N. E. (1991). Theoretical foundations for centrality measures. The American Journal of Sociology,96(6), 1478–1504.

    Article  Google Scholar 

  11. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika,31(4), 581–603.

    Article  MathSciNet  Google Scholar 

  12. Ibnoulouafi, A., & El Haziti, M. (2018). Density centrality: identifying influential nodes based on area density formula. Chaos, Solitons & Fractals,114, 69–80.

    Article  Google Scholar 

  13. Albert, R., Jeong, H., & Barabási, A. L. (2004). Error and attack tolerance of complex networks. Nature,340(1–3), 388–394.

    MathSciNet  Google Scholar 

  14. Kitsak, M., Gallos, L. K., Havlin, S., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics,6(11), 888–893.

    Article  Google Scholar 

  15. Chen, D. B., Lü, L. Y., Shang, M. S., et al. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications,391(4), 1777–1787.

    Article  Google Scholar 

  16. Centola, D. (2010). The spread of behavior in an online social network experiment. Science,329(5996), 1194–1197.

    Article  Google Scholar 

  17. Han, Z. M., Chen, Y., Li, M. Q., et al. (2016). An efficient node influence measurement based on triangle in complex networks. Acta Physica Sinica,65(16), 168901-1–168901-12.

    Google Scholar 

  18. Bian, T., & Deng, Y. (2018). Identifying influential nodes in complex networks: A node information dimension approach. Chaos: An Interdisciplinary Journal of Nonlinear Science,28(4), 043109.

    Article  MathSciNet  Google Scholar 

  19. Fox, W., & Everton, S. (2013). Mathematical modeling in social network analysis: Using TOPSIS to find node influences in a social network. Journal of Mathematics and System Science,3(10), 531–541.

    Google Scholar 

  20. Ren, Z. M., Shao, F., Liu, J. G., et al. (2013). Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica,62(12), 128901-1–128901-8.

    Google Scholar 

  21. Xu, S., & Wang, P. (2017). Identifying important nodes by adaptive LeaderRank. Physica A: Statistical Mechanics and its Applications,469, 654–664.

    Article  Google Scholar 

  22. Chen, D. B., Gao, H., Lü, L. Y., et al. (2013). Identifying influential nodes in large-scale directed networks: the role of clustering. Plos One,8(10), e77455-1–e77455-10.

    Google Scholar 

  23. Wang, H., Li, M., Wang, J. X., et al. (2011). A new method for identifying essential proteins based on edge clustering coefficient. International Symposium on Bioinformatics Research and Applications,6674, 87–98.

    Article  Google Scholar 

  24. Newman, M. E. J., & Girvan, M. (2004). Finding a devaluating community structure in networks. Physical Review E,69(2), 026113.

    Article  Google Scholar 

  25. Salavati, C., Abdollahpouri, A., & Manbari, Z. (2018). BridgeRank: A novel fast centrality measure based on local structure of the network. Physica A: Statistical Mechanics and its Applications,496, 635–653.

    Article  Google Scholar 

  26. Wang, Z., Du, C., Fan, J., et al. (2017). Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing,260, 466–477.

    Article  Google Scholar 

  27. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science,286, 509–512.

    Article  MathSciNet  Google Scholar 

  28. Zhang, P., Wang, J., Li, X., et al. (2008). Clustering coefficient and community structure of bipartite networks. Physica A: Statistical Mechanics and its Applications,387(27), 6869–6975.

    Article  Google Scholar 

  29. Sabet, M., & Naji, H. (2016). An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: A self-organized approach. Computers & Electrical Engineering,56, 399–417.

    Article  Google Scholar 

  30. Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E,65(2), 026107.

    Article  Google Scholar 

  31. Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,63(2), 066117.

    Article  Google Scholar 

  32. Liu, J. G., Lin, J. H., Guo, Q., et al. (2015). Locating influential nodes via dynamics-sensitive centrality. Scientific Reports,6(3), 032812.

    Google Scholar 

  33. Lü, L. Y., Chen, D. B., Ren, X. L., et al. (2016). Vital nodes identification in complex networks. Physics Reports,13(650), 1–63.

    MathSciNet  Google Scholar 

  34. Knight, W. R. (1966). A computer method for calculating Kendall’s Tau with ungrouped data. Journal of the American Statistical Association,61(314), 436–439.

    Article  Google Scholar 

  35. Yang, X. F., Megson, G. M., Tang, Y. Y., et al. (2008). Largest connected component of a star graph with faulty vertices. International Journal of Computer and Mathematics,85(12), 1771–1778.

    Article  MathSciNet  Google Scholar 

  36. Hu, P., Fan, W., & Mei, S. (2015). Identifying node importance in complex networks. Physica A: Statistical Mechanics and its Applications,429, 169–176.

    Article  Google Scholar 

  37. Liu, J. G., Ren, Z. M., & Guo, Q. (2013). Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications,392(18), 4154–4159.

    Article  Google Scholar 

  38. Dong, G. G., Gao, J. X., & Du, R. J. (2013). Robustness of network of networks under target attack. Physical Review E,87(5), 28–36.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments on the manuscript. This work is supported by the National Natural Science Foundation of China under Grant No. 61802333, and Science and Technology Research Project of Colleges and Universities in Hebei Province under Grant No. QN2018029 and Basic Research Program Natural Science Foundation and Key Basic Research Project in Hebei Province under Grant No. F2019203351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Qian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, YJ., Li, YQ., Yin, RR. et al. Efficient measurement model for critical nodes based on edge clustering coefficients and edge betweenness. Wireless Netw 26, 2785–2795 (2020). https://doi.org/10.1007/s11276-019-02040-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02040-4

Keywords

Navigation