Skip to main content

Advertisement

Log in

Reducing computation time of a wireless resource scheduler by exploiting temporal channel characteristics

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The long term evolution downlink scheduler must attain a low computation time as it performs scheduling decisions every 1 ms. 5G New Radio introduced mini-slots for the purpose of ultra-reliable and low-latency communications further shrinking the time to make scheduling decisions to 0.125 ms. Many optimal scheduling schemes have such high computation times that they are not suitable for implementation. Previous works generally attack this problem from a computational complexity theory perspective and devise alternative non-optimal problem formulations. Here, we tackle the problem from a practical point of view and propose to reduce the quantity of users and resources in the scheduling problem over a given time. We achieve this by scheduling relatively slow varying signal-to-noise ratio (SNR) users not as frequently but for relatively longer time durations. To evaluate the performance of our idea, we derive a novel correlated bivariate received SNR distribution. The derived distribution can also be applied to a signal-to-interference ratio limited system. We show that the number of operations it takes to make scheduling decisions can be reduced by 33% with confidence probability of 0.7 and by 58% with confidence probability of 0.4. We also evaluate the potential drawbacks of the proposed scheme in terms of efficiency and error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(E_0^2/2\) is the average power received without small scale fading (based on path loss and shadowing alone).

  2. Angles of arrival do not have to be uniformly distributed as long as they are random for the zero-mean Gaussian approximation to hold.

  3. The received signal power follows an exponential distribution.

References

  1. Asadi, A., & Mancuso, V. (2013). A survey on opportunistic scheduling in wireless communications. IEEE Communications Surveys & Tutorials, 15(4), 1671–1688.

    Article  Google Scholar 

  2. Sulthana, S. F., & Nakkeeran, R. (2014). Study of downlink scheduling algorithms in LTE networks. Journal of Networks, 9(12), 3381.

    Google Scholar 

  3. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys & Tutorials, 15(2), 678–700.

    Article  Google Scholar 

  4. Kwan, R., & Leung, C. (2010). A survey of scheduling and interference mitigation in LTE. Journal of Electrical and Computer Engineering, 2010, 1.

    Article  Google Scholar 

  5. Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys & Tutorials, 11(3), 92–106.

    Article  Google Scholar 

  6. Letaief, K. B., & Zhang, Y. J. (2006). Dynamic multiuser resource allocation and adaptation for wireless systems. IEEE Wireless Communications, 13(4), 38–47.

    Article  Google Scholar 

  7. Shariat, M., Quddus, A., Ghorashi, S., & Tafazolli, R. (2009). Scheduling as an important cross-layer operation for emerging broadband wireless systems. IEEE Communications Surveys Tutorials, 11(2), 74–86.

    Article  Google Scholar 

  8. Rao, J., & Vrzic, S. (2018). Packet duplication for URLLC in 5G: Architectural enhancements and performance analysis. IEEE Network, 32(2), 32–40.

    Article  Google Scholar 

  9. Ning, X., Ting, Z., Ying, W., & Ping, Z. (2006). A MC-GMR scheduler for shared data channel in 3GPP LTE system. In VTC-2006 Fall. 2006 IEEE 64th vehicular technology conference, IEEE, pp. 1–5.

  10. Zhang, X., Wang, Y., & Wang, W. (2006). Capacity analysis of adaptive multiuser frequency-time domain radio resource allocation in OFDMA systems. In 2006 IEEE international symposium on circuits and systems, pp. 4–7.

  11. Katoozian, M., Navaie, K., & Yanikomeroglu, H. (2009). Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications, 8(1), 66–71.

    Article  Google Scholar 

  12. Kwan, R., Leung, C., & Zhang, J. (2008). Multiuser scheduling on the downlink of an LTE cellular system. Research Letters in Communications, 2008, 3.

    Article  Google Scholar 

  13. Yin, H., & Liu, H. (2000). An efficient multiuser loading algorithm for OFDM-based broadband wireless systems. In Global telecommunications conference, GLOBECOM’00, IEEE, Vol. 1, pp. 103–107.

  14. Shen, Z., Andrews, J. G., & Evans, B. L. (2003). Optimal power allocation in multiuser OFDM systems. In Global telecommunications conference, GLOBECOM’03, Vol. 1, IEEE, pp. 337–341.

  15. Li, Y., Sheng, M., Tan, C. W., Zhang, Y., Sun, Y., Wang, X., et al. (2015). Energy-efficient subcarrier assignment and power allocation in OFDMA systems with max-min fairness guarantees. IEEE Transactions on Communications, 63(9), 3183–3195.

    Article  Google Scholar 

  16. Zarakovitis, C. C., & Ni, Q. (2013). Energy efficient designs for communication systems: Resolutions on inverse resource allocation principles. IEEE Communications Letters, 17(12), 2264–2267.

    Article  Google Scholar 

  17. Huang, J., Subramanian, V. G., Agrawal, R., & Berry, R. A. (2009). Downlink scheduling and resource allocation for OFDM systems. IEEE Transactions on Wireless Communications, 8(1), 288–296.

    Article  Google Scholar 

  18. Le, N. T., Jayalath, D., & Coetzee, J. (2018). Spectral-efficient resource allocation for mixed services in OFDMA-based 5G heterogeneous networks. Transactions on Emerging Telecommunications Technologies, 29(1), e3267.

    Article  Google Scholar 

  19. Schwarz, S., Mehlführer, C., & Rupp, M. (2010). Low complexity approximate maximum throughput scheduling for LTE. In 2010 Conference record of the forty fourth Asilomar conference on signals, systems and computers (ASILOMAR), IEEE, pp. 1563–1569.

  20. Wong, I. C., Shen, Z., Evans, B. L., & Andrews, J. G. (2004). A low complexity algorithm for proportional resource allocation in OFDMA systems. In IEEE workshop on signal processing systems, SIPS 2004, IEEE, pp. 1–6.

  21. Aggarwal, R., Assaad, M., Koksal, C. E., & Schniter, P. (2011). Joint scheduling and resource allocation in the OFDMA downlink: Utility maximization under imperfect channel-state information. IEEE Transactions on Signal Processing, 59(11), 5589–5604.

    Article  MathSciNet  Google Scholar 

  22. Xiao, X., Tao, X., & Lu, J. (2013). QoS-aware energy-efficient radio resource scheduling in multi-user OFDMA systems. IEEE Communications Letters, 17(1), 75–78.

    Article  Google Scholar 

  23. Wang, X., & Giannakis, G. B. (2011). Resource allocation for wireless multiuser OFDM networks. IEEE Transactions on Information Theory, 57(7), 4359–4372.

    Article  MathSciNet  Google Scholar 

  24. Madan, R., Boyd, S. P., & Lall, S. (2010). Fast algorithms for resource allocation in wireless cellular networks. IEEE/ACM Transactions on Networking (TON), 18(3), 973–984.

    Article  Google Scholar 

  25. Zhang, Z., He, Y., & Chong, E. K. (2005). Opportunistic downlink scheduling for multiuser OFDM systems. In 2005 IEEE wireless communications and networking conference, Vol. 2, IEEE, pp. 1206–1212.

  26. Comşa, I. S., Zhang, S., Aydin, M. E., Kuonen, P., Lu, Y., Trestian, R., et al. (2018). Towards 5G: A reinforcement learning-based scheduling solution for data traffic management. IEEE Transactions on Network and Service Management, 15(4), 1661–1675.

    Article  Google Scholar 

  27. Comşa, I. S., Aydin, M., Zhang, S., Kuonen, P., Wagen, J. F., & Lu, Y. (2014). Scheduling policies based on dynamic throughput and fairness tradeoff control in LTE-A networks. In 39th Annual IEEE conference on local computer networks, pp. 418–421, IEEE.

  28. Comşa, I. S., Zhang, S., Aydin, M., Chen, J., Kuonen, P., & Wagen, J. F. (2014). Adaptive proportional fair parameterization based LTE scheduling using continuous actor-critic reinforcement learning. In 2014 IEEE global communications conference, pp. 4387–4393, IEEE.

  29. Wu, J., & Fan, P. (2016). A survey on high mobility wireless communications: Challenges, opportunities and solutions. IEEE Access, 4, 450–476.

    Article  Google Scholar 

  30. Clarke, R. (1968). A statistical theory of mobile-radio reception. Bell System Technical Journal, 47(6), 957–1000.

    Article  Google Scholar 

  31. Rice, S. O. (1948). Statistical properties of a sine wave plus random noise. Bell System Technical Journal, 27(1), 109–157.

    Article  MathSciNet  Google Scholar 

  32. Rappaport, T. S., et al. (1996). Wireless communications: Principles and practice (Vol. 2). New Jersey: Prentice Hall.

    MATH  Google Scholar 

  33. Papoulis, A., & Pillai, S. U. (1985). Probability, random variables, and stochastic processes. New York: McGraw-Hill.

    Google Scholar 

  34. Ghosh, A., Zhang, J., Andrews, J. G., & Muhamed, R. (2010). Fundamentals of LTE. London: Pearson Education.

    Google Scholar 

  35. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (Vol. 55). North Chelmsford: Courier Corporation.

    MATH  Google Scholar 

  36. Middleton, D., & Institute of Electrical and Electronics Engineers., (1960). An introduction to statistical communication theory (Vol. 960). New York: McGraw-Hill.

  37. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  38. Lathi, B., & Ding, Z. (2009). Modern digital and analog communication systems. Oxford series in electrical and computer engineering. Oxford: Oxford University Press.

    Google Scholar 

  39. Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series, and products. Cambridge: Academic Press.

    Google Scholar 

  40. Chen, Y., & Tellambura, C. (2005). Infinite series representations of the trivariate and quadrivariate Rayleigh distribution and their applications. IEEE Transactions on Communications, 53(12), 2092–2101.

    Article  Google Scholar 

  41. Mehlführer, C., Wrulich, M., Ikuno, J. C., Bosanska, D., & Rupp, M. (2009). Simulating the long term evolution physical layer. In 2009 17th European signal processing conference, pp. 1471–1478.

  42. Eisenbrand, F. (2003). Fast integer programming in fixed dimension. In European symposium on algorithms, Springer, pp. 196–207.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tekinay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the University of Missouri—Kansas City, School of Graduate Studies.

Appendices

Appendix 1

1.1 Derivation of bivariate SNR density

Here, we derive bivariate SNR density by first converting joint amplitude density distribution to joint power density distribution before concluding with ratio of signal to noise. We start by joint signal and noise amplitude distribution density, Eq. (16), \(d_2(r_1,r_2,n_1,n_2)=\)

$$\begin{aligned}&\frac{r_1r_2n_1n_2\exp {\left( \frac{-\left( r_1^2+r_2^2\right) }{2\zeta _r(1-k^2)}\right) }\exp \left( {\frac{-(n_1^2+n_2^2)}{2\zeta _n}}\right) }{\zeta _r^2\zeta _n^2(1-k^2)} I_0 \left( \frac{kr_1r_2}{\zeta _r(1-k^2)}\right) , \nonumber \\&\quad 0\le r_1,r_2,n_1,n_2\le \infty \end{aligned}$$
(43)
$$\begin{aligned}&\beta _1=r_1^2, \beta _2=r_2^2, \beta _3=n_1^2, \beta _4=n_2^2\nonumber \\&\quad |J|=1/\left( 16\sqrt{\beta _1\beta _2\beta _3\beta _4}\right) \end{aligned}$$
(44)
$$\begin{aligned}&I_0(x)=\sum _{l=0}^{\infty }\left( \tfrac{x}{2}\right) ^{2l}\tfrac{1}{(l!)^2} \end{aligned}$$
(45)
$$\begin{aligned}&=\frac{\exp {\left( \frac{-\left( \beta _1+\beta _2\right) }{2\zeta _r(1-k^2)}\right) }\exp {\left( \frac{-(\beta _3+\beta _4)}{2\zeta _n}\right) \sum _{l=0}^{\infty }\left( \frac{k\sqrt{\beta _1}\sqrt{\beta _2}}{2\zeta _r(1-k^2)}\right) ^{2l}}}{16\zeta _r^2\zeta _n^2(1-k^2)(l!)^2} \end{aligned}$$
(46)
$$\begin{aligned}&\varphi _1=\frac{\beta _1}{\beta _3},\varphi _2=\frac{\beta _2}{\beta _4},\varphi _3=\beta _3,\varphi _4=\beta _4, \quad |J|=\varphi _3\varphi _4 \end{aligned}$$
(47)
$$\begin{aligned}&=\frac{\varphi _3\varphi _4\exp {\left( \frac{-\left( \varphi _1\varphi _3+\varphi _2\varphi _4\right) }{2\zeta _r(1-k^2)}\right) }\exp {\left( \frac{-(\varphi _3+\varphi _4)}{2\zeta _n}\right) }}{16\zeta _r^2\zeta _n^2(1-k^2)(l!)^2}\nonumber \times \\&\quad \sum _{l=0}^{\infty }\left( \frac{k\sqrt{\varphi _1\varphi _3}\sqrt{\varphi _2\varphi _4}}{2\zeta _r(1-k^2)}\right) ^{2l} \end{aligned}$$
(48)

Integrate over \(\varphi _3\):

$$\begin{aligned}&\int _0^{\infty }\varphi _3^{l+1}\exp {\left( \frac{-\varphi _1\varphi _3}{2\zeta _r(1-k^2)}\right) }\exp {\left( \frac{-\varphi _3}{2\zeta _n}\right) }d\varphi _3\nonumber \\&\quad = \frac{2^{2+l}\Gamma {(2+l)}}{\left( \tfrac{1}{\zeta _n}+\tfrac{\varphi _1}{(1-k^2)\zeta _r}\right) ^{2+l}} \end{aligned}$$
(49)

Integration over \(\varphi _4\) yields similar expression. The SNR distribution density, \(\xi (\varphi _1,\varphi _2)\), becomes:

$$\begin{aligned}&=\sum _{l=0}^{\infty }\frac{k^{2l}\varphi _1^l\varphi _2^l2^{2l+4}\Gamma ^2(2+l)}{2^{2l}16\zeta _r^{2l}(1-k^2)^{2l}\zeta _r^2\zeta _n^2(1-k^2)(l!)^2\left( \tfrac{1}{\zeta _n}+\tfrac{\varphi _1}{(1-k^2)\zeta _r}\right) ^{2+l}\left( \tfrac{1}{\zeta _n}+\tfrac{\varphi _2}{(1-k^2)\zeta _r}\right) ^{2+l}} \end{aligned}$$
(50)
$$\begin{aligned}&=\sum _{l=0}^{\infty } \frac{\Gamma ^2(2+l)\left( k\sqrt{\varphi _1}\sqrt{\varphi _2}\right) ^{2l}\zeta ^2_r\zeta _n^{2+2l}(1-k^2)^3}{{(\varphi _1\varphi _2\zeta _n^2+\zeta _n\zeta _r\varphi _1(1-k^2)+} {\zeta _n\zeta _r\varphi _2(1-k^2)+\zeta _r^2(1-k^2)^2)^{2+l}(l!)^2}}\nonumber , \\&\quad 0\le \varphi _1, \varphi _2 \le \infty \end{aligned}$$
(51)

Appendix 2

1.1 Derivation of trivariate distribution density of Rayleigh random variables

Joint density function, \(w_2(z_{I_1},z_{Q_1},z_{I_2},z_{Q_2},z_{I_3},z_{Q_3})\) is given by

$$\begin{aligned} =\frac{\exp { \left( {-\frac{\mathbf {Z}{^T}\mathbf {K}^{-1}\mathbf {Z}}{2}}\right) }}{(2\pi )^3(\det \mathbf {K})^{(1/2)}} \end{aligned}$$
(52)

where

$$\begin{aligned} \mathbf {Z}= \begin{bmatrix} z_{I_1} \\ z_{Q_1} \\ z_{I_2} \\ z_{Q_2} \\ z_{I_3} \\ z_{Q_3} \end{bmatrix} \quad \mathbf {K}=\zeta \begin{bmatrix} 1&0&k_1&0&k_2&0 \\ 0&1&0&k_1&0&k_2\\ k_1&0&1&0&k_1&0 \\ 0&k_1&0&1&0&k_1 \\ k_2&0&k_1&0&1&0\\ 0&k_2&0&k_1&0&1\\ \end{bmatrix} \end{aligned}$$
(53)

We change coordinates to polar, \(z_{I_1}=r_1\cos (\theta _1)\), \(z_{Q_1}=r_1\sin (\theta _1)\), \(z_{I_2}=r_2 \cos (\theta _2)\), \(z_{Q_2}=r_2\sin (\theta _2)\), \(z_{I_3}=r_3 \cos (\theta _3)\), \(z_{Q_3}=r_3\sin (\theta _3)\), \(|J|=r_1r_2r_3\). Density, \(w_3(r_1,r_2,r_3,\theta _1,\theta _2,\theta _3)=\)

$$\begin{aligned} \frac{r_1r_2r_3\exp {-\left( \frac{r_1^2\sigma _1+r_2^2\sigma _4+r_3^2\sigma _1+2r_1r_2\sigma _2\cos (\theta _1-\theta _2)+2r_1r_3\sigma _3\cos (\theta _1-\theta _3)+2r_2r_3\sigma _2\cos (\theta _2-\theta _3)}{2\zeta (k_2-1)(2k_1^2-k_2-1)}\right) }}{{(2\pi )^3\zeta ^3(k_2-1)(2k_1^2-k_2-1)}} \end{aligned}$$
(54)

where \(\sigma _1=1-k_1^2\), \(\sigma _2=k_1(k_2-1)\), \(\sigma _3=k_1^2-k_2\), \(\sigma _4=1-k_2^2\). Next, we make a change of variables \(x_1=\theta _1-\theta _2\), \(x_2=\theta _2-\theta _3\), and \(x_3=(\theta _1+\theta _2+\theta _3)/3\). \(|J|=1\). Integration over \(x_i\)’s would yield the density in terms of magnitude. Therefore,

$$\begin{aligned}&\int _0^{2\pi }\int _0^{2\pi }\int _0^{2\pi }e^{-(A\cos (x_1)+B\cos (x_2)+C\cos (x_1+x_2))}dx_1dx_2dx_3\nonumber \\&\quad =2\pi \int _0^{2\pi }\int _0^{2\pi }\left( I_0(A)+2\sum _{k=1}^{\infty }I_k(A)\cos (kx_1)\right) \nonumber \times \\&\qquad \left( I_0(B)+2\sum _{l=1}^{\infty }I_l(B)\cos (lx_2)\right) \nonumber \times \\&\qquad \left( I_0(C)+2\sum _{j=1}^{\infty }I_j(C)\cos (j(x_1+x_2))\right) dx_1dx_2 \end{aligned}$$
(55)

where

$$\begin{aligned} e^{-(A\cos (x_1))}=I_0(A)+2\sum _{k=1}^{\infty }I_k(A)\cos (kx_1) \end{aligned}$$
(56)

as given in [35] (9.6.34) and \(I_k(A)\) represents the modified Bessel function. We are not providing all of the steps due to space limitations here. Since the region of integration is periodic, all terms integrate to zero but of this form:

$$\begin{aligned}&\sum _{k=1}^{\infty }\sum _{j=1}^{\infty }I_k(A)I_j(C)\int _0^{2\pi }\cos (kx_1)\cos (jx_1)dx_1 \nonumber \\&\quad =\pi \sum _{k=1}^{\infty }I_k(A)I_k(C) \end{aligned}$$
(57)

The solution to Eq. (55) and the density are given in Eqs. (58) and (59) respectively.

$$\begin{aligned}&(2\pi )^3\left( I_0(A)I_0(B)I_0(C)+2\sum _{k=1}^{\infty }I_k(A)I_k(B)I_k(C)\right) \end{aligned}$$
(58)
$$\begin{aligned}&w_3(r_1,r_2,r_3)=\frac{r_1r_2r_3\exp {-\left( \frac{r_1^2\sigma _1+r_2^2\sigma _4+r_3^2\sigma _1}{2D\zeta }\right) }}{\zeta ^3 D}\nonumber \times \\&\quad \left( I_0(A)I_0(B)I_0(C)+2\sum _{k=1}^{\infty }I_k(A)I_k(B)I_k(C)\right) \end{aligned}$$
(59)

where \(A=2r_1r_2\sigma _2/2\zeta D\), \(B=2r_2r_3\sigma _2/2\zeta D\), \(C=2r_1r_3\sigma _3/2\zeta D\), \(D=(k_2-1)(2k_1^2-k_2-1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekinay, M., Beard, C. Reducing computation time of a wireless resource scheduler by exploiting temporal channel characteristics. Wireless Netw 25, 4259–4274 (2019). https://doi.org/10.1007/s11276-019-02088-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02088-2

Keywords

Navigation