Skip to main content
Log in

Bit error probability of the M-QAM scheme subject to multilevel (double) gated additive white Gaussian noise and Nakagami-m fading

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, noise models called multilevel gated additive white Gaussian noise (GAWGN) and multilevel double gated additive white Gaussian noise (\(\hbox {G}^{2}\)AWGN) are adopted, corresponding to the sum of a white Gaussian component of variance \(\sigma _{g}^{2}\) and a white Gaussian noise component of variance \(\sigma _{i}^2\) gated by a discrete random process defined in continuous time, C(t), which takes values into a finite discrete set. A channel subject to this noise combined with the Nakagami-m fading can be used to characterize links in several environments subject to noise caused by different sources and with different intensities. In this work, new exact and closed-form expressions are presented for the bit error probability (BEP) of the M-ary quadrature amplitude modulation scheme (M-QAM) subject to Nakagami-m fading and multilevel GAWGN or multilevel \(\hbox {G}^{2}\)AWGN. The BEP curves are presented for different parameters that characterize mathematically the channel, corroborated by simulations performed with the Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haykin, S. (2001). Communication systems (4th ed.). New York, NY: Wiley.

    Google Scholar 

  2. Cohen, L. (2005). The history of noise [on the 100th anniversary of its birth]. IEEE Signal Processing Magazine, 22(6), 20–45.

    Article  Google Scholar 

  3. Araújo, E. R., Queiroz, W. J. L., Madeiro, F., Lopes, W. T. A., & Alencar, M. S. (2015). On gated Gaussian impulsive noise in M-QAM with optimum receivers. Journal of Communication and Information Systems, 30(1), 10–20.

    Article  Google Scholar 

  4. Lago-Fernández, J., & Salter, J. (2004). Modelling impulsive interference in DVB-T. R&D White Paper, WHP, 080(299), 1–51.

    Google Scholar 

  5. Sanchez, M. G., Haro, L., Ramon, M. C., Mansilla, A., Ortega, C. M., & Oliver, D. (1999). Impulsive noise measurements and characterization in a UHF digital TV channel. IEEE Transactions on Electromagnetic Compatibility, 41(2), 124–136.

    Article  Google Scholar 

  6. Shongwe, T., Vinck, A. J. H., & Ferreira, H. C. (2015). The effects of periodic impulsive noise on OFDM. In Proceedings of the IEEE international symposium on powerline communications and its applications, pp. 29–31.

  7. Cheffena, M. (2012). Industrial wireless sensor networks: Channel modeling and performance evaluation. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–8.

    Article  Google Scholar 

  8. Stenumgaard, P., Chilo, J., Ferrer-Coll, P., & Angskog, P. (2013). Challenges and conditions for wireless machine-to-machine communications in industrial environments. IEEE Communications Magazine, 51(6), 187–192.

    Article  Google Scholar 

  9. Kim, D., Ingram, M. A., & Smith, W. W. (2001). Small-scale fading for an indoor wireless channel with modulated backscatter. In Proceedings of the IEEE Vehicular Technology Conference (Vol. 3, pp. 1616–1620).

  10. Karedal, J., Wyne, S., Almers, P., Tufvesson, F., & Molisch, A. F. (2004). Statistical analysis of the UWB channel in an industrial environment. In Proceedings of the IEEE Vehicular Technology Conference (Vol. 1, pp. 81–85).

  11. Sexton, D., Mahony, M., Lapinski, M., & Werb, J. (2005). Radio channel quality in industrial wireless sensor networks. In Proceedings of the Sensors for Industry Conference (pp. 88–94).

  12. Agrawal, P., Ahlén, A., Olofsson, T., & Gidlund, M. (2014). Characterization of long term channel variations in industrial wireless sensor networks. In Proceedings of the IEEE International Conference on Communications (ICC) (pp. 1–6).

  13. Cheffena, M. (2016). Propagation channel characteristics of industrial wireless sensor networks. IEEE Antennas and Propagation Magazine, 58(1), 66–73.

    Article  Google Scholar 

  14. Tuan, N. T., Kim, D., & Lee, J. (2018). On the performance of cooperative transmission schemes in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 14(9), 4007–4018.

    Article  Google Scholar 

  15. Nakagami, M. (1960) The \(m\)-distribution—a general formula of intensity distribution of rapid fading. Statistical Method of Radio Propagation, September.

  16. Amzucu, D. M., Li, H., & Fledderus, E. (2014). Indoor radio propagation and interference in 2.4 GHz wireless sensor networks: Measurements and analysis. Wireless Personal Communications, 76(2), 245–269.

    Article  Google Scholar 

  17. Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y. (2018). An amateur drone surveillance system based on the cognitive internet of things. IEEE Communications Magazine, 56(1), 28–35.

    Article  Google Scholar 

  18. Silva, H. S., Alencar, M. S., de Queiroz, W. J. L., Teixeira, D. B. A., & Madeiro, F. (2018). Bit error probability of \(M\)-QAM under impulsive noise and fading modeled by using Markov chains. Radioengineering, 27(4), 1183–1190.

    Article  Google Scholar 

  19. Silva, H. S., Alencar, M. S., de Queiroz, W. J. L., Teixeira, D. B. A., & Madeiro, F. (2018). Closed-form expression for the bit error probability of the \(M\)-QAM for a channel subjected to impulsive noise and Nakagami fading. Wireless Communications and Mobile Computing, 2018, 1–9.

    Article  Google Scholar 

  20. Silva, H. S., Alencar, M. S., de Queiroz, W. J. L., Teixeira, D. B. A., & Madeiro, F. (2019). Bit error probability of the \(M\)-QAM scheme under \(\eta\)-\(\mu\) fading and impulsive noise in a communication system using spatial diversity. International Journal of Communication Systems, 2019, 1–15.

    Google Scholar 

  21. Lopes, W. T. A., & Alencar, M. S. (2002). QPSK detection schemes for Rayleigh fading channels. In  Proceedings of the International Telecommunications Symposium (pp. 1–5).

  22. Lopes, W. T. A., Madeiro, F., & Alencar, M. S. (2007). Closed-form expression for the bit error probability of rectangular QAM subject to Rayleigh fading. In Proceedings of the IEEE Vehicular Technology Conference (pp. 1–5).

  23. de Queiroz, W. J. L., Lopes, W. T. A., Madeiro, F., & Alencar, M. S. (2010). An alternative method to compute the bit error probability of modulation schemes subject to Nakagami-\(m\) fading. EURASIP Journal on Advances in Signal Processing, 2010, 1–12.

    Article  Google Scholar 

  24. Goldsmith, A. (2005). Wireless communications (1st ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  25. Cho, K., & Yoon, D. (2002). On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Transactions on Communications, 50(7), 1074–1080.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I . M. (2007). Table of integrals, series and products (7th ed.). New York, NY: Academic Express.

    MATH  Google Scholar 

Download references

Funding

This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugerles S. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, H.S., Alencar, M.S., Queiroz, W.J.L. et al. Bit error probability of the M-QAM scheme subject to multilevel (double) gated additive white Gaussian noise and Nakagami-m fading. Wireless Netw 25, 4359–4369 (2019). https://doi.org/10.1007/s11276-019-02100-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02100-9

Keywords

Navigation