Skip to main content

Advertisement

Log in

Graphene based tunable and wideband terahertz antenna for wireless network communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A wide band terahertz dipole-antenna using graphene with tunable resonant frequency is proposed. Presence of graphene in the antenna is shown to electrically tune resonant frequency and to push the antenna to resonate with multibands in terahertz regime. The proposed terahertz antenna shows maximum of five tuning frequencies and better performance parameters such as return loss of −  39.7 dB, maximum directivity of 9.3 dB, five resonant tuning frequencies (multi resonances) at chemical voltage of 0.5 eV, maximum fractional bandwidth of 15.6%, maximum radiation efficiency of 21.5% and large bandwidth of 2.32 THz. Large bandwidth of the antenna can be very useful for highest possible data transfer among wireless devices. The proposed graphene based terahertz antenna has the dimensions of few micrometers so miniaturization i.e. size is reduced to 0.007 mm2 which is suitable for size limited future applications such as Wireless Networks on Chip, software defined meta material and Wireless Nano Sensor Networks (WNSNs). Size of the proposed terahertz antenna is less than that reported in the literature. One reconfigurable and miniaturized antenna may replace a number of single function radiators, thereby also cost and size of a WNSNs can be abridged while performance is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geim, K., & Novoselov, K. S. (2007). The rise of grapheme. Nature Materials, 6, 183–191.

    Article  Google Scholar 

  2. Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., et al. (2007). Making grapheme visible. Applied Physics Letters, 91, 063124.

    Article  Google Scholar 

  3. Stampfer, C., Guttinger, J., Molitor, F., Graf, D., Ihn, T., & Ensslin, K. (2008). Tunable Coulomb blockade in nanostructured grapheme. Applied Physics Letters, 92, 012102.

    Article  Google Scholar 

  4. Chaudhary, S., et al. (2013). Use of graphene as a patch material in comparison to the copper and other carbon nanomaterials. International Journal of Emerging Technologies in Computational and Applied Sciences, 3(3), 272–279.

    Google Scholar 

  5. Gomez-Diaz, J. S., Perruisseau-Carrier, J., Sharma, P., & Ionescu, A. (2012). Non-contact characterization of graphene surface impedance at micro and millimeter waves. Journal of Applied Physics, 111, 114908.

    Article  Google Scholar 

  6. Skulason, H. S., Nguyen, H. V., Guermoune, A., Sridharan, V. M., Siaj, V., Caloz, C., et al. (2011). 110 GHz measurement of large-area graphene integrated in low-loss microwave structures. Applied Physics Letters, 99, 153504.

    Article  Google Scholar 

  7. Dragoman, M., Muller, A. A., Dragoman, D., Coccetti, F., & Plana, R. (2010). Terahertz antenna based on grapheme. Journal of Applied Physics, 107, 104313.

    Article  Google Scholar 

  8. Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. Journal of Applied Physics, 112, 114915.

    Article  Google Scholar 

  9. Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., & Perruisseau Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a grapheme stack. Applied Physics Letters, 101, 214102.

    Article  Google Scholar 

  10. Jablan, M., Buljan, H., & Soljacic, M. (2009). Plasmonics in graphene at infrared frequencies. Physical Review B, 80, 245435.

    Article  Google Scholar 

  11. Anand, S., Sriram Kumara, D., Wub, R. J., & Chavalic, M. (2014). Graphene nano ribbon based terahertz antenna on polyimide substrates. Optik, 125(2014), 5546–5549.

    Article  Google Scholar 

  12. Zhou, T., Cheng, Z., Zhang, H., Le Berre, M., Militaru, L., & Calmon, F. (2014). Miniaturized tunable terahertz antenna based on graphene. Microwave and Optical Technology Letters, 56(8), 1792–1794.

    Article  Google Scholar 

  13. Haider, N., & Yarovoy, A. G. (2013). Recent developments in reconfigurable and multiband antenna technology. International Journal of Antenna and Propagation, 2013, Article ID 869170. http://dx.doi.org/10.1155/2013/869170.

  14. Modelski, J., & Yashchyshyn, Y. (2006). Semiconductor and ferroelectric antennas. In Proceedings of the Asia-Pacific microwave conference (APMC’06) (pp. 1052–1059).

  15. Yashchyshyn, Y., Marczewski, J., Derzakowski, K., Modelski, J. W., & Grabiec, P. B. (2009). Development and investigation of an antenna system with reconfigurable aperture. IEEE Transactions on Antennas and Propagation, 57(1), 2–8.

    Article  Google Scholar 

  16. Fathy, A. E., Rosen, A., Owen, H. S., et al. (2003). Silicon-based reconfigurable antennas—Concepts, analysis, implementation, and feasibility. IEEE Transactions on Microwave Theory and Techniques, 51(6), 1650–1661.

    Article  Google Scholar 

  17. Liu, L., & Langley, R. J. (2008). Liquid crystal tunable microstrip patch antenna. Electronics Letters, 44(20), 1179–1180.

    Article  Google Scholar 

  18. Yashchyshyn, Y., & Modelski, J. (2007). Reconfigurable semiconductor antenna. In Proceedings of the 9th international conference: The experience of designing and application of CAD systems in microelectronics (CADSM’07) (pp. 146–150).

  19. Gaebler, A., Moessinger, A., Goelden F., et al. (2009). Liquid crystal reconfigurable antenna concepts for space applications at microwave and millimeter waves. International Journal of Antennas and Propagation 2009, Article ID 876989. https://doi.org/10.1155/2009/876989.

  20. Hussein, A., Hussiein, T., Fyath, R. S., et al. (2015). Design and performance investigation of tunable UWB THz antenna based on graphene fractal artificial magnetic conductor. International Journal of Electronics and Communication Engineering & Technology (IJECET), 6(9), 39–47.

    Google Scholar 

  21. Abadal, S., Liaskos, C., Tsioliaridou, A., Ioannidis, S., Pitsillides, A., et al. (2017). Computing and communications for the software-defined metamaterial paradigm: A context analysis. IEEE Access, 5, 6225–6235.

    Article  Google Scholar 

  22. Abadal, S., Sheinman, B., Katz, O., Markish, O., Elad, D., Fournier, Y., et al. (2015). Broadcast-enabled massive multicore architectures: A wireless RF approach. IEEE Micro, 35(5), 52–61.

    Article  Google Scholar 

  23. Azizi, M. K., Ksiksi, M. A., Ajlani, H., & Gharsaallah, A. (2017). Terahertz graphene based reconfigurable patch antenna. PIER Letters, 71, 69–76.

    Google Scholar 

  24. Gatte, M. T., Soh, P. J., Rahim, H. A., Ahmad, R. B., & AbdulMalek, M. F. (2016). The performance of THz antenna via modelling and characterization of doped graphene. PIER M, 49, 21–31.

    Article  Google Scholar 

  25. Lima, J. R. (2015). Controlling the energy gap of graphene by Fermi velocity engineering. Physics Letters A, 379(3), 179–182.

    Article  Google Scholar 

  26. Hanson, G. W., et al. (2008). Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. Journal of Applied Physics, 103(6), 064302. https://doi.org/10.1063/1.2891452.

    Article  Google Scholar 

  27. Jornet, J. M., & Akyildiz, I. F. (2010). Graphene based nano-antennas for electromagnetic nano communications in the terahertz band. In: Proceedings of the fourth European conference on antennas and propagation, Barcelona, Spain (pp. 1–5). https://doi.org/10.1016/j.nancom.2010.04.001.

  28. Llaster, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcon, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures: Fundamentals and Applications, 10, 353–358.

    Article  Google Scholar 

  29. Tripathi, S. K., & Kumar, A. (2017). High gain highly directive graphene based terahertz antenna for wireless communication. i-Manager’s Journal on Communication Engineering and Systems. https://doi.org/10.26634/jcs.6.4.13804.

    Article  Google Scholar 

  30. Hosseininejad, S. E., & Komjani, N. (2016). Waveguide-fed tunable terahertz antenna based on hybrid graphene-metal structure. IEEE Transactions on Antennas and Propagation, 64(9), 3787–3793.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I convey my sincere thanks for the support provided by Thapar University, Patiala, Punjab, IKGPTU, Jalandhar, Punjab and IIT Indore, India. I also convey my sincere thanks for the support provided by MIET, Meerut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, S.K., Kumar, M. & Kumar, A. Graphene based tunable and wideband terahertz antenna for wireless network communication. Wireless Netw 25, 4371–4381 (2019). https://doi.org/10.1007/s11276-019-02101-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02101-8

Keywords

Navigation