Skip to main content

Advertisement

Log in

Fog Computing Applications in Smart Cities: A Systematic Survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nowadays, the smart city is a topic that has attracted the attention of many researchers, engineers and even the public because of to its pervasive and vast effect on everyday life. The technologies used to realize the smart cities are often based on cloud computing. As a result, they have carried the limitations of cloud computing, such as unreliable latency, lack of mobility support, and location awareness. Fog computing provides different solutions to these problems. Although efforts have been done in the area of fog computing applications in smart cities, it is still difficult to find a systematic reliable survey that covers this area. This article aims to provide a comprehensive overview based on a systematic literature review of current works that have been done in the area of fog computing applications in smart cities. In addition, a different analytical comparison of related works, the trends, and future research directions are pointed out in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rahim Biswas, A., & Giaffreda, R. (2014). IoT and cloud convergence: Opportunities and challenges. In IEEE World Forum on Internet of Things (WF-IoT) (pp. 375–376).

  2. Malik, A., & Om, H. (2018). cloud computing and internet of things integration: architecture, applications, issues, and challenges (pp. 1–24). Springer: Sustainable Cloud and Energy Services.

    Google Scholar 

  3. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal,1(1), 22–32.

    Google Scholar 

  4. Shojaiemehr, B., Rahmani, A. M., & Qader, N. N. (2018). Cloud computing service negotiation: A systematic review. Computer Standards & Interfaces,55, 196–206.

    Google Scholar 

  5. Souri, A., Jafari Navimipour, N., & Rahmani, A. M. (2017). Formal verification approaches and standards in cloud computing: A comprehensive and systematic review. Computer Standards & Interfaces,58, 1–22.

    Google Scholar 

  6. Perera, C., Qin, Y., Estrella, J. C., Marganiec, S. R., & Vasilakos, A. V. (2017). Fog computing for sustainable smart cities: A survey. ACM Computing Surveys (CSUR),50(3), 32.

    Google Scholar 

  7. Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: Architecture, key technologies, applications, and open issues. Journal of Network and Computer Applications,98, 27–42.

    Google Scholar 

  8. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal,3(5), 637–646.

    Google Scholar 

  9. Baccarelli, E., Naranjo, P. G. V., Scarpiniti, M., Shojafar, M., & Abawajy, J. H. (2017). Fog of Everything: energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access,5, 9882–9910.

    Google Scholar 

  10. Giordano, A., Spezzano, G., 7 Vinci, A. (2016). Smart agents and fog computing for smart city applications. In Proceedings of first international conference on smart cities, pp. 137–146.

    Google Scholar 

  11. Khan, S., Parkinson, S., & Qin, Y. (2017). Fog computing security: a review of current applications and security solutions. Journal of Cloud Computing,6, 19.

    Google Scholar 

  12. Bilal, K., Khalid, O., Erbad, A., & Khan, S. U. (2017). Potentials, trends, and prospects in edge technologies: fog, cloudlet, mobile edge, and micro data centers. Computer Networks,130, 94–120.

    Google Scholar 

  13. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal,3(6), 854–864.

    Google Scholar 

  14. Stojmenovic, I. (2014). Fog computing: A cloud to the ground support for smart things and machine-to-machine networks. In Telecommunication networks and applications conference (pp. 117–122).

  15. Neirotti, P., De Marco, A., Cagliano, A., Mangano, G., & Scorrano, F. (2014). Current trends in smart city initiatives: Some stylised facts. Cities,38, 25–36.

    Google Scholar 

  16. Chourabi, H., Nam, T., Walker, S., Gilgarcia, J. R., Mellouli, S., Nahon, K., Pardo, T. A., Hans, H., & Scholl, J. (2012). Understanding smart cities: An integrative framework. In 45th Hawaii international conference on system sciences (pp. 2289–2297).

  17. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter cities and their innovation challenges. Computer,44(6), 32–39.

    Google Scholar 

  18. Su, K., Li, J., & Fu, H. (2011). Smart city and applications. In International conference on electronics, communications and control (ICECC) (pp. 1028–1031).

  19. Arroub, A., Zahi, A., Sabir, E., & Sadik, M. (2016). A literature review on smart cities: Paradigms, opportunities, and open problems. In International conference on wireless networks and mobile communications (WINCOM) (pp. 180–186).

  20. Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog computing: A taxonomy, survey and future directions, internet of things (technology, communications, and computing) (pp. 103–130). Springer

  21. Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017). Fog computing: Towards minimizing delay in the internet of things. In IEEE international conference on edge computing (pp. 17–24).

  22. Xiao, Y., & Krunz, M. (2017). QoS, and power efficiency tradeoff for fog computing networks with fog node cooperation. In IEEE conference on computer communications (pp. 1–9).

  23. Gu, L., Zeng, D., Guo, S., Barnawi, A., & Xiang, Y. (2015). Cost efficient resource management in fog computing supported medical cyber-physical systems. IEEE Transactions on Emerging Topics in Computing,5(1), 108–119.

    Google Scholar 

  24. Wang, M., Wu, J., Li, G., Li, J., Li, Q., & Wang, S. (2017). Toward mobility support for information-centric IoV in smart city using fog computing. In IEEE international conference on smart energy grid engineering (SEGE) (pp. 357–361).

  25. Bruneo, D., Distefano, S., Longo, F., Merlino, G., Puliafito, A., D’Amico, V., Sapienza, M., & Torrisi, G. (2016). Stack4Things as a fog computing platform for smart city application. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 848–853).

  26. Bittencourt, L. F., Montes, J. D., Buyya, R., Rana, O. F., & Parashar, M. (2017). Mobility-aware application scheduling in fog computing. IEEE Cloud Computing,4(2), 26–35.

    Google Scholar 

  27. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2017). Security and privacy in smart city applications: Challenges and solution. IEEE Communications Magazine,55(1), 122–129.

    Google Scholar 

  28. Alrawais, A., Alhothaily, A., Hu, C., & Cheng, X. (2017). Fog computing for the internet of things: Security and privacy issues. IEEE Internet Computing,21(2), 34–42.

    Google Scholar 

  29. Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimension, performance, and initiatives. Journal of Urban Technology,22(1), 3–21.

    Google Scholar 

  30. Fallavi, K. N., Ravi Kumar, V., & Chaithra, B. M. (2017). Smart waste management using the Internet of Things: A survey, International conference on I-SMAC.

  31. Anderson, E. C., Okafor, K. C., Nkwachukwu, O. Dike, D. O. (2017). Real time car parking system: A novel taxonomy for integrated vehicular computing. In Computing international conference on networking and informatics (pp. 1–9).

  32. Lin, T., Rivano, H., & Le Mouel, F. (2017). A survey of smart parking solutions. IEEE Transaction on Intelligent Transportation Systems,18(12), 3229–3253.

    Google Scholar 

  33. Bharat, V., Shubham, S., Jagdish, D., & Amol, P. (2017). Smart water management system in cities. In 2017 international conference on big data analytics and computational intelligent (ICBDAC) (pp. 267–271).

  34. Wadekar, S., Vakare, V., Prajapati, R., Yadav, S., & Yadav, V. (2016). Smart water management using IOT. In 5th international conference on wireless networks and embedded systems (pp. 1–4).

  35. Robles, T., Alcarria, R., Martin, D., Morales, A., Navarro, M., Calero, R., Iglesias, S., & Lopez, M. (2014). An Internet of Things-based model for smart water management. In 28th international conference on advanced information networking and applications workshops (pp. 821–826).

  36. Pecar, M., & Papa, G. (2017). Transportation problems and their potential solutions in smart cities. In International conference on smart systems and technologies (SST) (pp. 195–199).

  37. Barve, V. (2017). Smart lighting for smart cities. In Proceedings of IEEE region symposium (TENSYMP) (pp. 1–5).

  38. Veena, P. C., Tharakan, P., Haridas, H., Ramya, K., Joju, R., & Jyothis, T. S. (2016). Smart street light system based on image processing, Circuit. 2016. In International conference on circuit, power and computing technologies (ICCPCT) (pp. 1–5).

  39. Xavier, N., Kumar, A., & Panda, S. K. (2016). Design, fabrication, and testing of smart lighting system. In Future technologies conference (pp. 763–768).

  40. Jeyasheeli, P. G., & Johnson Selva, J. V. (2017) An IoT design for smart lighting in the green building based on environmental factors. In 4th International conference on advanced computing and communication systems (pp. 1–5).

  41. Pinto, M. F., Soares, G. M., Mandonca, T. F. F., Almeida, P.S., & Braga, H. A. C. (2014). Smart modules for lighting system applications and power quality measurements. In 11th IEEE/IAS international conference on industry applications (pp. 1–8).

  42. Simonofski, A., Asensio, E. S., Smedth, J. D., & Snoeck, M. (2017) Citizen participation in smart cities: Evaluation framework proposal. In 19th conference on business informatics (Vol. 1, pp. 227–236).

  43. Zhu, Z. T., Yu, M. H., & Riezebos, P. (2016). A research framework of smart education. Smart Learning Environment,3(1), 4.

    Google Scholar 

  44. Tikhomirov, V., Dneprovskaya, N., & Yankovskaya, E. (2015). Three dimensions of smart education. Smart Education, and Smart e-Learning,41, 47–56.

    Google Scholar 

  45. Baker, S., Xiang, W., & Atkinson, I. (2017). Internet of Things for smart healthcare. In IEEE Access (Vol. 1, pp. 26521–26544).

  46. Solanas, A., Casino, F., Batista, E., & Rallo, R. (2017). Trends and challenges in smart healthcare research: A journey from data to wisdom. In IEEE 3rd forum on research and technologies for society and industry (pp. 1–7).

  47. Nguyen Gia, T., Jiang, M., Rahmani, A. M., Wseterlund, T., Liljeberg, P., & Tenhunen, H. (2015). Fog computing in healthcare Internet of Things: A case study on ECG feature extraction. In IEEE international conference on computer and information technology, Ubiquitous computing and communications; dependable, autonomic and secure (pp. 356–363).

  48. Alexander Kraemer, F., Braten, A. E., Tamkittikhun, N., & Plama, D. (2017). Fog computing in healthcare-a review and discussion. IEEE Access 5, 9206–9222.

  49. Kazmi, H., Mehmood, F., & Amayri, M. (2017). Smart home features: Algorithmic challenges and opportunities. In 14th international symposium on pervasive systems, algorithms, and networks (pp. 441–448).

  50. Dutta, J., & Roy, S. (2017). IoT-fog-cloud based architecture for the smart city: Prototype pf a smart building. In Cloud computing, data science & engineering (pp. 237–242).

  51. Dongbaare, P., Osuri, S. O., & Daniel Chowdhury, S. P. (2017). A smart energy management system for residental use. In IEEE PES PowerAfrica (pp. 612–616).

  52. Luntovsky, A., & Spillner, J. (2017). Smart grid, internet of things and fog computing, architectural transformations in network servies and distributed systems (pp. 135–210). Berlin: Springer.

    Google Scholar 

  53. Lopes, N. V. (2017). Smart governance: A key factor for smart cities implementation. In International conference on smart grid and smart Cities (pp. 277–282).

  54. Yu, J., Lee, N., Pyo, C. S., & Lee, Y. S. (2016). WISE: A web of object architecture on IoT environment for smart home and building energymanagement. Journal of Supercomputing, 74(9), 4403–4418.

    Google Scholar 

  55. Vinueza Naranjo, P. G., Pooranian, Z., Shojafar, M., Conti, M., & Buyya, R. (2017). FOCAN: A fog-supported smart city network architecture for management of applications in the interne of everything environments. Journal of Parallel Distributed Computing,132, 274–283.

    Google Scholar 

  56. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Molnar, S. L., & Mahmoud, S. (2017). SmartCityWare: A service-oriented middleware for cloud and fog enabled smart city services. IEEE Access,5, 17576–17588.

    Google Scholar 

  57. Seitz, A., Johanssen, J. O., Bruegge, B., Loftness, V., Hartkopf, V., 7 Sturm, M. (2017). A fog architecture for decentralized decision making in smart buildings. In SCOPE’17 proceedings of the 2nd international workshop on science of smart city operations and platforms engineering, ACM (pp. 34–39).

  58. Yin, L., Luo, J., & Luo, H. (2018). Task scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Transactions on Industrial Imformatics,14(10), 4712–4721.

    Google Scholar 

  59. Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: a novel framework for health and wellness applications. Journal of Supercomputing,72(10), 3677–3695.

    Google Scholar 

  60. Nikoloudakis, Y., Panagiotakis, S., Markakis, E., Pallis, E., Mastorakis, G., Mavromoustakis, C. X., et al. (2016). A fog-based emergency system for smart enhanced living environments. IEEE Cloud Computing,3(6), 54–62.

    Google Scholar 

  61. Velasquez, K., Abreu, D. P., Curado, M., & Monteiro, E. (2017). Service placement for latency reduction in the internet of things. Annals of Telecommunications,72(1), 105–115.

    Google Scholar 

  62. Rahmani, A. M., Gia, T. N., Negash, B., Anaznpour, A., Azimi, I., Jiang, M., et al. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems,78(2), 641–658.

    Google Scholar 

  63. Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2018). Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems,78(2), 659–676.

    Google Scholar 

  64. Valls, M. G., Urrego, C. C., & Fornes, A. G. (2018). Accelerating smart eHealth services execution at the fog computing infrustructure. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2018.07.001.

  65. Ali, S., & Ghazal, M. (2017). Real-time heart attack mobile detection service (RHAMDS): An IoT use case for software defined networks. In 30th Canadian conference on electrical and computer engineering (CCECE) (pp. 1–6).

  66. Cerina, L., Greco, M., & Domenico, M. (2017). A fog-computing architecture for preventive healthcare and assisted living in smart ambients. In 3rd international forum on research and technologies for society and industry (RTSI) (pp. 1–6).

  67. Osanaiye, O., Chen, S., Yan, Z., Lu, R., Raymond Choo, K. K., & Dlodlo, M. (2017). From Cloud to Fog Computing: A Review and a Conceptual Live VM Migration Framework. IEEE Access,5, 8284–8300.

    Google Scholar 

  68. Yaghmaee Moghaddam, M. H., & Garcia, A. L. (2018). A fog-based internet of energy architecture for transactive energy management systems. IEEE Internet of Things Journal,5(2), 1055–1069.

    Google Scholar 

  69. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., & Leitner, P. (2017). Optimized IoT service placement in the fog. Service Oriented Computing and Application,11(4), 427–443.

    Google Scholar 

  70. Cicirelli, F., Guerrieri, A., Spezzano, G., & Vinci, A. (2017). An edge-based platform for dynamic smart city applications. Future Generation Computer Systems,76, 106–118.

    Google Scholar 

  71. Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., & Yang, Q. (2015). A hierarchical distributed fog computing architecture for big data analysis in smart cities. In ASE BD&SI’15 proceedings of ASE bigdata & social informatics, ACM.

  72. Igder, S., Bhattacharya, S., Elimirghani, & J. M. H. (2016). Energy efficient fog servers for the Internet of Things information piece delivery (IoTIPD) in a smart city vehicular environment. In 10th international conference on next generation mobile applications, security and technologies (NGMAST) (pp. 99–104).

  73. Jia, G., Han, G., Li, A., & Du, J. (2018). SSL: Smart street lamp based on fog computng for smarter cities. IEEE Transactions on Industrial Informatics,14(11), 4995–5004.

    Google Scholar 

  74. Tang, C., Wei, X., Zhu, C., Chen, W., & Rodrigues, J. P. C. (2018). Towards smart parking based on fog computing. IEEE Access,6, 70172–70185.

    Google Scholar 

  75. Wang, X., Ning, Z., & Wang, L. (2018). Offloading in internet of vehicles: A fog-enabled real-time traffic management system. IEEE Transaction on Industrial Informatics,14(10), 4568–4578.

    Google Scholar 

  76. Kui, X., Sun, Y., Zhang, S., & Li, Y. (2018). Characterizing the capacity of vehicular fog computing in large-urban environment. Mobile Networks and Applications, 23(4), 1050–1067.

    Google Scholar 

  77. Kumar, S. A. P., Madhumathi, R., Chelliah, P. R., Tao, L., & Wang, S. (2018). A novel digital twin-centric approach for driver intention prediction andtraffic congestion avoidance. Journal of Reliable Intelligent Environment, 4(4), 199–209.

    Google Scholar 

  78. Naranjo, P. G. V., Baccarelli, E., & Scarpiniti, M. (2018). Design and energy-efficient resource management of Virtualized networked Fog architectures for the real-time support of IoT applications. The journal of Supercomputing,74(6), 2470–2507.

    Google Scholar 

  79. Simonofski, A., Asensio, E. S., Smedt, J. D., & Snoeck, M. (2017). Citizen participation in smart cities: Evaluation framework proposal. In 19th conference on business informatics (CBI) (Vol. 1, pp. 227–236).

  80. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., & Zhang, Y. (2018). Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet of Things Journal,5(2), 677–686.

    Google Scholar 

  81. Kitanov, S., & Janevski, T. (2016). State of the art: Fog computing for 5G networks. In 24th TELFOR, IEEE conferences (pp. 1–4).

  82. Chaudhary, R., Kumar, N., & Zeadally, S. (2017). Network service chaining in fog and cloud computing for the 5G environment: Data management and security challenges. IEEE Communications Magazine,55(11), 114–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Masoud Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadzadeh, G., Rahmani, A.M. Fog Computing Applications in Smart Cities: A Systematic Survey. Wireless Netw 26, 1433–1457 (2020). https://doi.org/10.1007/s11276-019-02208-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02208-y

Keywords

Navigation