Skip to main content
Log in

A VDTN scheme with enhanced buffer management

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular delay tolerant networks (VDTNs) enable communications in sparse vehicular ad-hoc networks and other challenged environments where traditional networking approaches fail. We propose a VDTN routing scheme that combines the message deliver strategy of PRoPHET protocol, the message copy control strategy of Spray-and-Wait protocol and an enhanced buffer management scheme. In our proposal, the buffer management scheme is designed to improve certain network performance goals, namely, maximizing the average delivery ratio and minimizing the average delivery delay. Furthermore, we use computer simulations to show that the proposed routing scheme achieves better system performance than the existing baseline routing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.

    Article  Google Scholar 

  2. Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular Ad Hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.

    Article  Google Scholar 

  3. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C., et al. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4, 5356–5373.

    Article  Google Scholar 

  4. Qureshi, N. M. F., Siddiqui, I. F., Unar, M. A., Uqaili, M. A., Nam, C. S., Shin, D. R., et al. (2018). An aggregate mapreduce data block placement strategy for wireless iot edge nodes in smart grid. In Wireless personal communications, pp. 1–12.

  5. Zhao, N., Yu, F. R., Sun, H. J., & Li, M. (2015). Adaptive power allocation schemes for spectrum sharing in interference alignment (IA)-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65, 3700–3714.

    Article  Google Scholar 

  6. Iwendi, C., Uddin, M., Ansere, J. A., Nkurunziza, P., Anajemba, J., & Bashir, A. K. (2018). On detection of sybil attack in large-scale vanets using spider-monkey technique. IEEE Access, 6, 47258–47267.

    Article  Google Scholar 

  7. Ali, A., Liu, H., Bashir, A. K., El-Sappagh, S., Ali, F., Baig, A., et al. (2018). Priority-based cloud computing architecture for multimedia-enabled heterogeneous vehicular users. Journal of Advanced Transportation, 2018, 1–12.

    Article  Google Scholar 

  8. Chauhdary, S. H., Hassan, A., Alqarni, M. A., Alamri, A., & Bashir, A. K. (2019). A twofold sink-based data collection in wireless sensor network for sustainable cities. Sustainable Cities and Society, 45, 1–7.

    Article  Google Scholar 

  9. Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 27–34, August

  10. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  11. Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications surveys & tutorials, 15(2), 654–677.

    Article  Google Scholar 

  12. Er, N. I., Singh, K. D., & Bonnin, J.-M. (2019). Dc4led: A hierarchical vdtn routing for data collection in smart cities. In2019 16th IEEE annual consumer communications & networking conference (CCNC), pp. 1–4

  13. Zhao, N., Pan, X., Li, Z., Chen, Y., Li, F., Ding, Z., et al. (2019). Joint trajectory and precoding optimization for UAV-assisted NOMA networks. IEEE Transactions on Vehicular Technology, 67, 3723–3735.

    Google Scholar 

  14. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Duke technical report CS-2000-06.

  15. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, pp. 252–259

  16. Lindgren, A., Doria, A., & Scheln, O. (2003). Probabilistic routing in intermittently connected networks. SIGMOBILE Mobile Computing Communications Review, 7(3), 19–20.

    Article  Google Scholar 

  17. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The single-copy case. IEEE/ACM Transactions on Networking, 16(1), 63–76.

    Article  Google Scholar 

  18. Guo, Z., Wang, B., & Cui, J.-H. (2010). Prediction assisted single-copy routing in underwater delay tolerant networks. In2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–6

  19. Wang, Y., Jain, S., Martonosi, M., & Fall, K. (2005). Erasure-coding based routing for opportunistic networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, pp. 229–236

  20. Liao, Y., Tan, K., Zhang, Z., & Gao, L. (2006). Estimation based erasure-coding routing in delay tolerant networks. InProceedings of the 2006 international conference on wireless communications and mobile computing, pp. 557–562

  21. Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In Proceedings of IEEE INFOCOM, pp. 1–11, April

  22. Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys & Tutorials, 15(1), 387–401.

    Article  Google Scholar 

  23. Xia, F., Liu, L., Jedari, B., & Das, S. K. (2016). Pis: A multi-dimensional routing protocol for socially-aware networking. IEEE Transactions on Mobile Computing, 15(11), 2825–2836.

    Article  Google Scholar 

  24. Schoeneich, R. O., & Surgiewicz, R. (2016). Socialrouting: The social-based routing algorithm for delay tolerant networks. International Journal of Electronics and Telecommunications, 62(2), 167–172.

    Article  Google Scholar 

  25. Moreira, W., Mendes, P., & Sargento, S. (2013). Social-aware opportunistic routing protocol based on user’s interactions and interests. In International conference on ad hoc networks, pp. 100–115

  26. Moreira Jr, W., Mendes, P., & Cerqueira, E. (2014). Opportunistic routing based on users daily life routine. In Proceedings of the IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), pp. 1–6

  27. Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.

    Article  Google Scholar 

  28. Shin, K., & Kim, S. (2011). Enhanced buffer management policy that utilises message properties for delay-tolerant networks. IET Communications, 5, 753–759.

    Article  MathSciNet  Google Scholar 

  29. Liu, Y., Wang, J., Zhang, S., & Zhou, H. (2011). A buffer management scheme based on message transmission status in delay tolerant networks. In 2011 IEEE global telecommunications conference—GLOBECOM 2011, pp. 1–5, Dec

  30. Wu, D., Zhou, J., Zhang, P., & Wang, R. (2013). Intelligent dynamical buffer scheduling mechanism for intermittently connected mobile network. Wireless Personal Communications, 73(3), 1269–1288.

    Article  Google Scholar 

  31. Wei, K., Guo, S., Zeng, D., & Xu, K. (2014). “A multi-attribute decision making approach to congestion control in delay tolerant networks. In 2014 IEEE international conference on communications (ICC), pp. 2742–2747, June

  32. Balasubramanian, A., Levine, B., & Venkataramani, A. (2007). Dtn routing as a resource allocation problem. SIGCOMM Computing and Communications Review, 37(4), 373–384.

    Article  Google Scholar 

  33. Krifa, A., Barakat, C., & Spyropoulos, T. (2008). Optimal buffer management policies for delay tolerant networks. In2008 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, pp. 260–268, June

  34. Krifa, A., Barakat, C., & Spyropoulos, T. (2012). Message drop and scheduling in dtns: Theory and practice. IEEE Transactions on Mobile Computing, 11(9), 1470–1483.

    Article  Google Scholar 

  35. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The one simulator for dtn protocol evaluation. In Second international conference on simulation tools and techniques (SIMUTools 2009), pp. 1–10, March

Download references

Acknowledgements

This research was supported in part by JSPS KAKENHI Grant Number 18KK0279, 19H04093, JST-Mirai Program Grant Number JPMJMI17B3, and the Telecommunications Advanced Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celimuge Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Wu, C., Chen, X. et al. A VDTN scheme with enhanced buffer management. Wireless Netw 26, 1537–1548 (2020). https://doi.org/10.1007/s11276-019-02241-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02241-x

Keywords

Navigation