Skip to main content
Log in

Full-duplex medium access control protocols in wireless networks: a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Medium Access Control (MAC) protocol plays an important role in full-duplex wireless networks. Theoretically, full-duplex communications have this ability to increase the capacity of traditional half-duplex wireless systems by up to twice. However, designing and implementing an efficient MAC protocol is a central issue in this way. Increasing throughput, collision avoidance, and fairness are common challenges in designing an efficient full-duplex MAC protocol. After giving a short introduction to the general classification of traditional MAC protocols, IEEE 802.11 MAC protocol, and the identified challenges of full-duplex communications in wireless networks, this review paper provides a comprehensive survey of current major MAC protocols for full-duplex wireless communications and classifies them in to three categories i.e. distributed wireless local area networks, centralized wireless local area networks, and other types of networks. This paper also explores and gives a comparative analysis of current full-duplex MAC protocols with stating their advantages and disadvantages as well as comparing them one with another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. V. N. Index. Global mobile data traffic forecast update, 2016? 2021 White Paper [Internet], ed.

  2. Marlali, D., & Gurbuz, O. (2017). Design and performance analysis of a full-duplex MAC protocol for wireless local area networks. Ad Hoc Networks,67, 53–67. https://doi.org/10.1016/j.adhoc.2017.10.001.

    Article  Google Scholar 

  3. Cai, Y., Yu, F. R., Li, J., Zhou, Y., & Lamont, L. (2013). Medium access control for unmanned aerial vehicle (UAV) ad-hoc networks with full-duplex radios and multipacket reception capability. IEEE Transactions on Vehicular Technology,62(1), 390–394.

    Article  Google Scholar 

  4. Duarte, M., et al. (2014). Design and characterization of a full-duplex multiantenna system for WiFi networks. IEEE Transactions on Vehicular Technology,63(3), 1160–1177.

    Article  Google Scholar 

  5. Tan, L. T., & Le, L. B. (2015). Design and optimal configuration of full-duplex MAC protocol for cognitive radio networks considering self-interference. IEEE Access,3, 2715–2729.

    Article  Google Scholar 

  6. Kim, D., Lee, H., & Hong, D. (2015). A survey of in-band full-duplex transmission: From the perspective of PHY and MAC layers. IEEE Communications Surveys & Tutorials,17(4), 2017–2046.

    Article  Google Scholar 

  7. Thilina, K. M., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Medium access control design for full duplex wireless systems: Challenges and approaches. IEEE Communications Magazine,53(5), 112–120.

    Article  Google Scholar 

  8. Carleial, A., & Hellman, M. (1975). Bistable behavior of ALOHA-type systems. IEEE Transactions on Communications,23(4), 401–410.

    Article  Google Scholar 

  9. Tsao, S.-L., & Huang, C.-H. (2011). A survey of energy efficient MAC protocols for IEEE 802.11 WLAN. Computer Communications,34(1), 54–67.

    Article  Google Scholar 

  10. Yuan, X., & Duan, Z. (2009). Fair round-robin: A low complexity packet schduler with proportional and worst-case fairness. IEEE Transactions on Computers,58(3), 365–379.

    Article  MathSciNet  Google Scholar 

  11. Sharon, O., & Altman, E. (2001). An efficient polling MAC for wireless LANs. IEEE/ACM Transactions on Networking,9(4), 439–451.

    Article  Google Scholar 

  12. Balador, A., Bohm, A., Uhlemann, E., Calafate, C. T., & Cano, J.-C. (2015). A reliable token-based mac protocol for delay sensitive platooning applications. In Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd, 2015 (pp. 1–5). IEEE.

  13. Chen, X., Huang, C., Fan, X., Liu, D., & Li, P. (2018). LDMAC: A propagation delay-aware MAC scheme for long-distance UAV networks. Computer Networks,144, 40–52.

    Article  Google Scholar 

  14. Wang, X., Tang, A., & Huang, P. (2015). Full duplex random access for multi-user OFDMA communication systems. Ad Hoc Networks,24, 200–213.

    Article  Google Scholar 

  15. Hadded, M., Muhlethaler, P., Laouiti, A., Zagrouba, R., & Saidane, L. A. (2015). TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Communications Surveys & Tutorials,17(4), 2461–2492.

    Article  Google Scholar 

  16. Prasad, R., & Ojanpera, T. (1998). A survey on CDMA: Evolution towards wideband CDMA. In 1998 IEEE 5th international symposium on spread spectrum techniques and applications, 1998. Proceedings (vol. 1, pp. 323–331). IEEE.

  17. Guo, C., Zhao, L., Zhao, H., & Chen, W.-E. (2015). A joint beamforming based SDMA protocol for IEEE 802.11 n downlink. In 2015 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE) (pp. 166–170). IEEE.

  18. Al-Mefleh, H., & Al-Kofahi, O. (2018). Frequency-domain contention and polling MAC protocols in IEEE 802.11 wireless networks: A survey. Computer Communications, 129, 1–18.

    Article  Google Scholar 

  19. Aijaz, A., & Kulkarni, P. (2017). Simultaneous transmit and receive operation in next generation IEEE 802.11 WLANs: A MAC protocol design approach. IEEE Wireless Communications,24(6), 128–135.

    Article  Google Scholar 

  20. Choi, J. I., Jain, M., Srinivasan, K., Levis, P., & Katti, S. (2010). Achieving single channel, full duplex wireless communication. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (pp. 1–12). ACM.

  21. Cheng, W., Zhang, X., & Zhang, H. (2013). RTS/FCTS mechanism based full-duplex MAC protocol for wireless networks. In Globecom Workshops (GC Wkshps), 2013 IEEE (pp. 5017–5022). IEEE.

  22. Goyal, S., Liu, P., Gurbuz, O., Erkip, E., & Panwar, S. (2013). A distributed MAC protocol for full duplex radio. In 2013 Asilomar conference on signals, systems and computers (pp. 788–792). IEEE.

  23. Hsu, K.-C., Lin, K.C.-J., & Wei, H.-Y. (2017). Inter-client interference cancellation for full-duplex networks. In INFOCOM 2017-IEEE conference on computer communications, IEEE (pp. 1–9). IEEE.

  24. Tang, A., & Wang, X. (2015). A-duplex: Medium access control for efficient coexistence between full-duplex and half-duplex communications. IEEE Transactions on Wireless Communications,14(10), 5871–5885.

    Article  Google Scholar 

  25. Singh, N., Gunawardena, D., Proutiere, A., Radunovi, B., Balan, H. V., & Key, P. (2011). Efficient and fair MAC for wireless networks with self-interference cancellation. In 2011 international symposium on modeling and optimization in mobile, ad hoc and wireless networks (WiOpt) (pp. 94–101). IEEE.

  26. Chen, C., Hou, S., & Wu, S. (2018). Saturation throughput analysis of an asymmetric full-duplex mac protocol in WLANs with hidden terminals. IEEE Access.

  27. Wang, Z., Liu, Y., Lin, Y., & Huang, S. (2015). Full-duplex MAC protocol based on adaptive contention window for visible light communication. Journal of Optical Communications and Networking,7(3), 164–171.

    Article  Google Scholar 

  28. Al-Kadri, M. O., Aijaz, A., & Nallanathan, A. (2016). An energy-efficient full-duplex MAC protocol for distributed wireless networks. IEEE Wireless Communications Letters,5(1), 44–47.

    Article  Google Scholar 

  29. Xie, X., & Zhang, X. (2014). Semi-synchronous channel access for full-duplex wireless networks. In 2014 IEEE 22nd international conference on network protocols (ICNP) (pp. 209–214). IEEE.

  30. Seddar, J., Khalifé, H., Al Safwi, W., & Conan, V. (2015). A full duplex MAC protocol for wireless networks. In 2015 international wireless communications and mobile computing conference (IWCMC) (pp. 244–249). IEEE.

  31. Liao, R., Bellalta, B., & Oliver, M. (2015). Modelling and enhancing full-duplex MAC for single-hop 802.11 wireless networks. IEEE Wireless Communications Letters,4(4), 349–352.

    Article  Google Scholar 

  32. Song, Y., Qi, W., & Cheng, W. (2018). Energy efficient MAC protocol for wireless full-duplex networks. China Communications,15(1), 35–44.

    Article  Google Scholar 

  33. Song, Y., Qi, W., Zhao, W., & Cheng, W. (2019). Full-duplex MAC protocol for CSMA/CA-based single-hop wireless networks. Sensors,19(10), 2413.

    Article  Google Scholar 

  34. Sanada, K., & Mori, K. (2019). Throughput Analysis for Full Duplex Wireless Local Area Networks with Hidden Nodes. In 2019 16th IEEE annual consumer communications & networking conference (CCNC) (pp. 1–4). IEEE.

  35. Kim, J. Y., Mashayekhi, O., Qu, H., Kazandjieva, M., & Levis, P. (2013). Janus: A novel MAC protocol for full duplex radio. CSTR,2(7), 23.

    Google Scholar 

  36. Liu, S., Han, B., & Peng, W. (2018). A polling-based traffic-aware MAC protocol for centralized full-duplex wireless networks. IEEE Access,6, 28225–28238.

    Article  Google Scholar 

  37. Choi, W., Lim, H., & Sabharwal, A. (2015). Power-controlled medium access control protocol for full-duplex WiFi networks. IEEE Transactions on Wireless Communications,14(7), 3601–3613.

    Article  Google Scholar 

  38. Hu, J., Di, B., Liao, Y., Bian, K., & Song, L. (2018). Hybrid MAC protocol design and optimization for full duplex wi-fi networks. IEEE Transactions on Wireless Communications.

  39. Qu, Q., Li, B., Yang, M., Yan, Z., Zuo, X., & Guan, Q. (2015). FuPlex: A full duplex MAC for the next generation WLAN. In 2015 11th international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE) (pp. 239–245). IEEE.

  40. Zhou, W., Srinivasan, K., & Sinha, P. (2013). RCTC: Rapid concurrent transmission coordination in full DuplexWireless networks. In 2013 21st IEEE international conference on network protocols (ICNP) (pp. 1–10). IEEE.

  41. Aijaz, A., & Kulkarni, P. (2017). Protocol design for enabling full-duplex operation in next-generation IEEE 802.11 WLANs. IEEE Systems Journal,99, 1–12.

    Google Scholar 

  42. Chen, Y.-D., Chen, I.-J., & Shih, K.-P. (2018). An in-band full duplex MAC protocol with interference free for next generation WLANs. In 2018 international conference on electronics technology (ICET) (pp. 407–410). IEEE.

  43. Kim, W., Kim, T., Joo, S., & Pack, S. (2018). An opportunistic MAC protocol for full duplex wireless LANs. In 2018 international conference oninformation networking (ICOIN) (pp. 810–812). IEEE.

  44. Ahn, H., & Suh, Y.-J. (2019). Full-duplex MAC protocol using buffer status reports during unused uplink periods in WLAN. Ad Hoc Networks,94, 101950.

    Article  Google Scholar 

  45. Zhou, Y., Zhang, H., Chen, R., & Zhou, T. (2018). Design and performance analysis of two-stage contention MAC protocol for full-duplex wireless networks. International Journal of Sensor Networks,26(2), 115–124.

    Article  Google Scholar 

  46. Chen, Y.-D., Cao, J.-M., Chen, I.-J., & Shih, K.-P. (2019). FFD: A fragmentation-based full-duplex MAC protocol for asymmetric IEEE 802.11 WLANs. In 2019 Eleventh international conference on ubiquitous and future networks (ICUFN) (pp. 387–389). IEEE.

  47. Song, Y., Qi, W., & Cheng, W. (2019). Adaptive range-based collision avoidance MAC protocol in wireless full-duplex ad hoc networks. KSII Transactions on Internet & Information Systems,13(6), 3000–3022.

    Google Scholar 

  48. Tan, L. T., & Le, L. B. (2015). Distributed MAC protocol design for full-duplex cognitive radio networks. In Global communications conference (GLOBECOM), 2015 IEEE (pp. 1–6). IEEE.

  49. Li, C., et al. (2016). FDCA: A full-duplex collision avoidance MAC protocol for underwater acoustic networks. IEEE Sensors Journal, 16(11), 4638–4647.

    Article  Google Scholar 

  50. Ghaffari, A. (2014). Designing a wireless sensor network for ocean status notification system. Indian Journal of Science and Technology,7(6), 809.

    Google Scholar 

  51. Cheng, W., Zhang, X., & Zhang, H. (2015). Full-duplex spectrum-sensing and MAC-protocol for multichannel nontime-slotted cognitive radio networks. IEEE Journal on Selected Areas in Communications,33(5), 820–831.

    Article  Google Scholar 

  52. Tamaki, K., Raptino, H. A., Sugiyama, Y., Bandai, M., Saruwatari, S., & Watanabe, T. (2013). Full duplex media access control for wireless multi-hop networks. In VTC Spring (pp. 1–5).

  53. Francisco, M. S. A., & Brito, J. M. C. (2019). Performance analysis of full duplex wireless multi-hop networks. In International conference on cognitive radio oriented wireless networks (pp. 394–408). Springer.

  54. Choi, N., Patel, M., & Venkatesan, S. (2006). A full duplex multi-channel MAC protocol for multi-hop cognitive radio networks. In 1st international conference on cognitive radio oriented wireless networks and communications, 2006 (pp. 1–5). IEEE.

  55. Bharadia, D., & Katti, S. (2014). Full duplex MIMO radios. Self,1(A2), A3.

    Google Scholar 

  56. Chai, X., Li, T., Xing, C., Xiao, H., & Zhang, Z. (2016). Throughput improvement in cellular networks via full-duplex based device-to-device communications. IEEE Access,4(11), 7645–7657.

    Article  Google Scholar 

  57. Wen, D., & Yu, G. (2016). Time-division cellular networks with full-duplex base stations. IEEE Communications Letters,20(2), 392–395.

    Article  Google Scholar 

  58. Shen, X., Cheng, X., Yang, L., Ma, M., & Jiao, B. (2013). On the design of the scheduling algorithm for the full duplexing wireless cellular network. In Globecom workshops (GC Wkshps), 2013 IEEE (pp. 4970–4975). IEEE.

  59. Bento, T., Bernardo, L., Dinis, R., Oliveira, R., Pinto, P., & Amaral, P. (2015). FM-MAC: A novel MAC protocol for in-band full-duplex systems that use multipacket reception. In Globecom workshops (GC Wkshps), 2015 IEEE (pp. 1–6). IEEE.

  60. Jung, D., Kim, R., & Lim, H. (2012). Asynchronous medium access protocol for multi-user MIMO based uplink WLANs. IEEE Transactions on Communications,60(12), 3745–3754.

    Article  Google Scholar 

  61. Nam, C., & Bahk, S. (2015). ΔSNR-MAC: A priority-based multi-round contention scheme for MU-MIMO WLANs. Computer Networks,92, 24–40.

    Article  Google Scholar 

  62. Tan, K., et al. (2009). SAM: Enabling practical spatial multiple access in wireless LAN. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 49–60). ACM.

  63. Dibaei, M., et al. (2019). An overview of attacks and defences on intelligent connected vehicles. arXiv preprint arXiv:1907.07455.

  64. Bagherlou, H., & Ghaffari, A. (2018). A routing protocol for vehicular ad hoc networks using simulated annealing algorithm and neural networks. The Journal of Supercomputing,74(6), 2528–2552.

    Article  Google Scholar 

  65. Yang, D., et al. (2018). Intelligent and connected vehicles: Current status and future perspectives. Science China Technological Sciences, 61(10), 1446–1471.

    Article  Google Scholar 

  66. Bazzi, A., Campolo, C., Masini, B. M., Molinaro, A., Zanella, A., & Berthet, A. O. (2018). Enhancing cooperative driving in IEEE 802.11 vehicular networks through full-duplex radios. IEEE Transactions on Wireless Communications,17, 2402–2416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dibaei, M., Ghaffari, A. Full-duplex medium access control protocols in wireless networks: a survey. Wireless Netw 26, 2825–2843 (2020). https://doi.org/10.1007/s11276-019-02242-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02242-w

Keywords

Navigation