Skip to main content
Log in

Design and development of planar antenna array for mimo application

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Multi-Input Multi-Output (MIMO) is the need for recent communication system for the enhancement of channel capacity. While the number of antenna array elements increased, the spacing between the array elements and size of the antenna reduced. Hence high coupling between the elements occur, and thus the channel capacity reduced. There were several existing methods employs, however there were some limitations like reduced gain, dielectric constant, and bandwidth. So as to overcome this and to increase the performance characteristics such as bandwidth, gain of MIMO antennas and to lessen the dielectric constant of substrate material this proposed scheme is introduced. Using these considerations and requirements, an array of two-element MIMO system will be designed and developed with a less dielectric material (\( \varvec{\varepsilon}_{{\varvec{r }}} < 4 \)). So in this Taconic RF-35 (dielectric constant is 3.5), Two T-Shaped antennas are employed for 2.45 GHz (ISM band) with multiple modes of operation to achieve the improved bandwidth of about − 10 db. Simulation is done by HFSS 13.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hannula, J. M., Saarinen, T. O., Lehtovuori, A., Holopainen, J., & Viikari, V. (2019). Tunable eight-element MIMO antenna based on the antenna cluster concept. IET Microwaves, Antennas and Propagation, 13, 959–965.

    Article  Google Scholar 

  2. Aggarwal, A., & Kaur, A. G. (2016). Design and development of stacked microstrip antenna array for mimo applications.

  3. Kaur, D., & Kumar, N. (2018). Capacity enhancement of multiuser wireless communication system through adaptive non-linear pre coding. International Journal of Communication Networks and Information Security, 10, 67–78.

    Google Scholar 

  4. Elfergani, I., Hussaini, A. S., Rodriguez, J., & Abd-Alhameed, R. (2018). Antenna fundamentals for legacy mobile applications and beyond. Springer.

  5. Sivasankari, J., & Sridevi, B. (2017). Enhancing energy efficiency using massive MIMO technique applicable for next generation networks. International Journal of Engineering Trends and Technology (IJETT).

  6. Kim, H.-J., Park, J., Oh, K.-S., Choi, J. P., Jang, J. E., & Choi, J.-W. (2016). Near-field magnetic induction MIMO communication using heterogeneous multipole loop antenna array for higher data rate transmission. IEEE Transactions on Antennas and Propagation, 64, 1952–1962.

    Article  Google Scholar 

  7. Ali Sarkar, G., Ballav, S., Chatterjee, A., Ranjit, S., & Parui, S. K. (2019). Four element MIMO DRA with high isolation for WLAN applications. Progress in Electromagnetics Research, 84, 99–106.

    Article  Google Scholar 

  8. Mahto, S. K., & Choubey, A. (2016). A novel hybrid IWO/WDO algorithm for nulling pattern synthesis of uniformly spaced linear and non-uniform circular array antenna. AEU-International Journal of Electronics and Communications, 70, 750–756.

    Article  Google Scholar 

  9. Xia, Y.-Q., Chen, X.-R., & Tang, T. (2015). A novel eight ports dual band antenna array for 2.4/3.5 GHz MIMO applications. Optik, 126, 1175–1180.

    Article  Google Scholar 

  10. See, C. H., Saleh, A., Alabdullah, A. A., Hameed, K., Abd-Alhameed, R. A., & Jones, S., et al. (2018). Compact wideband printed MIMO/diversity monopole antenna for GSM/UMTS and LTE applications. In: Antenna fundamentals for legacy mobile applications and beyond (pp. 191–209). Springer.

  11. Chamok, N. H., Yılmaz, M. H., Arslan, H., & Ali, M. (2016). High-gain pattern reconfigurable MIMO antenna array for wireless handheld terminals. IEEE Transactions on Antennas and Propagation, 64, 4306–4315.

    Article  MathSciNet  Google Scholar 

  12. Biswas, A., & Gupta, V. R. (2019). Design and development of low profile MIMO antenna for 5G new radio smartphone applications. Wireless Personal Communications, pp. 1–12.

  13. Soltani, S., & Murch, R. D. (2015). A compact planar printed MIMO antenna design. IEEE Transactions on Antennas and Propagation, 63, 1140–1149.

    Article  MathSciNet  Google Scholar 

  14. Sudhashree, S., & Chitra, S. (2019). Design and development of improved fractal mimo antenna. Telecommunications and Radio Engineering, 78.

  15. Malviya, L., Panigrahi, R. K., & Kartikeyan, M. (2018). Four element planar MIMO antenna design for long-term evolution operation. IETE Journal of Research, 64, 367–373.

    Article  Google Scholar 

  16. Hussain, R., Alreshaid, A. T., Podilchak, S. K., & Sharawi, M. S. (2017). Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microwaves, Antennas and Propagation, 11, 271–279.

    Article  Google Scholar 

  17. Singh, H. S., & Meshram, M. K. (2017). Design of compact dual-element antenna array for LTE700 and WWAN applications. In: 2017 International applied computational electromagnetics society symposium-Italy (ACES), pp. 1–2.

  18. Radhi, A. H., Nilavalan, R., Wang, Y., Al-Raweshidy, H., Eltokhy, A. A. & Ab Aziz, N. (2018). Mutual coupling reduction with a wideband planar decoupling structure for UWB–MIMO antennas.

  19. Kwon, O.-Y., Song, R., & Kim, B.-S. (2018). A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications. IEEE Antennas and Wireless Propagation Letters, 17, 600–603.

    Article  Google Scholar 

  20. Wang, H., Liu, L., Zhang, Z., Li, Y., & Feng, Z. (2015). A wideband compact WLAN/WiMAX MIMO antenna based on dipole with V-shaped ground branch. IEEE Transactions on Antennas and Propagation, 63, 2290–2295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Prabhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, T., Pandian, S.C. Design and development of planar antenna array for mimo application. Wireless Netw 27, 939–946 (2021). https://doi.org/10.1007/s11276-020-02253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02253-y

Keywords

Navigation