Skip to main content
Log in

Performance analysis of 160 Gbit/s single-channel PDM-QPSK based inter-satellite optical wireless communication (IsOWC) system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Inter-satellite optical wireless communication (IsOWC) links have been exploited by many researchers as a viable technology to transmit information amongst two or more satellites using optical carrier signals and outer space as the medium of propagation medium. IsOWC links can securely transmit information all over the globe. The present study discusses a spectral-efficient large-speed single-channel IsOWC system using polarization division multiplexed-quadrature phase shift keying (PDM-QPSK) scheme. Coherent detection has been used at the receiver terminal for receiver sensitivity improvement. A digital signal processing (DSP) module to mitigate losses due to nonlinearity effects and for estimating carrier phase has been used at the receiver. We have analyzed the proposed link performance by investigating the required optical signal to noise ratio (OSNR) to achieve a target bit error rate (BER). The reported results show a faithful 160 Gbit/s transmission at 40,000 km with good BER. Also, we numerically investigate the OSNR performance of link for increasing pointing errors. Further, a comparative analysis of the proposed link with previous literature illustrates a better performance in terms of spectral efficiency and figure of merit (maximum transmission range \({\times} \) information transmission rate). The integration of PDM-QPSK with coherent detection and DSP provides a viable platform to develop spectral-efficient IsOWC links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dhasarathan, V., Singh, M., & Malhotra, J. (2019). Development of high-speed FSO transmission link for the implementation of 5G and Internet of Things. Journal of Wireless Networks. https://doi.org/10.1007/s11276-019-02166-5.

    Article  Google Scholar 

  2. Wang, D., & Abouzeid, A. A. (2011). Throughput and delay analysis for hybrid radio-frequency and free-space-optical (RF/FSO) networks. Wireless Networks,17, 877.

    Article  Google Scholar 

  3. Koepf, G., Marshalek, R., & Begley, D. (2002). Space laser communications: A review of major programs in the United States. AEU-International Journal of Electronics and Communication,56(4), 232–242.

    Article  Google Scholar 

  4. Sharma, V., & Kumar, N. (2013). Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system. Optics Communications,286, 99–102.

    Article  Google Scholar 

  5. Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials,19(1), 57–96.

    Article  Google Scholar 

  6. Shatnawi, A. A., Warip, M., & Safar, A. (2016). Influence of transmitting pointing errors on high speed WDM-AMI-Is-OWC transmission system. Journal of Optical Communication, DeGruyter,39(1), 1–5.

    Google Scholar 

  7. Boone, B., Bruzzi, J., Kluga, B., Millard, W., et al. (2004). Optical communications development for spacecraft applications. Johns Hopkins APL Technical Digest,25(4), 306–315.

    Google Scholar 

  8. Nielsen, T., & Oppenhauser, G. (2002). In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4. SILEX. In Proceeding of SPIE, free space laser communication technologies XIV (vol. 4635).

  9. Singh, M. (2016). Modeling and performance analysis of 10 Gbps inter-satellite optical wireless communication link. Journal of Optical Communications,39(1), 49–53.

    Google Scholar 

  10. Kumar, N. (2014). Enhanced performance analysis of inter-satellite optical-wireless communication (IsOWC) system. Optik,125(8), 1945–1949.

    Article  Google Scholar 

  11. Chaudhary, S., Sharma, A., & Chaudhary, N. (2016). 6 × 20 Gbps hybrid WDM–PI inter-satellite system under the influence of transmitting pointing errors. Journal of Optical Communications,37(4), 375–379.

    Article  Google Scholar 

  12. Zhu, Z., Zhao, S., Li, Y., & Li, X. (2015). Performance comparison of analogue inter-satellite microwave photonics link using intensity modulation with direct detection and phase modulation with interferometric detection. IET Optoelectronics,9(2), 88–95.

    Article  Google Scholar 

  13. Gopal, P., Jain, V. K., & Kar, S. (2012) Performance analysis of ground to satellite FSO system with DAPPM scheme in weak atmospheric turbulence. In International conference on fibre optics and photonics. OSA technical digest (online), Optical Society of America, paper WPo.43.

  14. Gopal, P., Jain, V. K., & Kar, S. (2014). Modulation techniques used in earth-to-satellite and inter-satellite free space optical links. In Proceedings of SPIE 9248, unmanned/unattended sensors and sensor networks X, 92480V

  15. Li, X., Ma, J., Yu, S., & Tan, L. (2011) Investigation of optical intensity fluctuation in the presence of satellite vibration for intersatellite optical communications. In Proceedings of 2011 international conference on computer science and network technology, Harbin (pp. 65–67).

  16. Kumari, G., & Selwal, C. (2016). Performance optimization of return-to-zero DPSK modulation in inter-satellite optical wireless communication. In 2016 international conference on recent advances and innovations in engineering (ICRAIE), Jaipur (pp. 1–5).

  17. Rashed, A. N. Z., Tabbour, M. S. F., & Natarajan, K. (2019). Performance enhancement of overall LEO/MEO intersatellite optical wireless communication systems. International Journal of Satellite Communications and Networking,38(1), 31–40.

    Article  Google Scholar 

  18. Viswanath, A., Kaushal, H., Jain, V. K., & Kar, S. (2014). Evaluation of performance of ground to satellite free space optical link under turbulence conditions for different intensity modulation schemes. In Proceedings of SPIE 8971, free-space laser communication and atmospheric propagation XXVI, 897106

  19. Gupta, A., & Nagpal, S. (2016). Design and evaluation of 10-Gbps inter-satellite optical wireless communication link for improved performance. Journal of Optical Communications,38(2), 195–199.

    Google Scholar 

  20. Thappa, V., Sharma, B., & Sharma, A. (2019). High speed 2 × 10 Gbps WDM enabled inter-satellite optical wireless communication link. Journal of Optical Communications. https://doi.org/10.1515/joc-2019-0122.

    Article  Google Scholar 

  21. Li Qing, Xu, Yangjie, S. X., Hongyang, G., Qiang, W., Dong, He, Zhenming, P., et al. (2019). Method to measure light spot position in beacon-less inter-satellite communication system. Applied Sciences,9(15), 1–10.

    Google Scholar 

  22. Sharma, P., & Meena, S. (2019). Analysis of pointing error at 100 Gbps by using different encoding technique in spatial diversity based inter-satellite optical wireless communication (IS-OWC) system. International Journal of Engineering Research & Technology (IJERT),7(9), 1–4.

    Google Scholar 

  23. Sodnik, Z., Furch, B., & Lutz, H. (2010). Optical inter-satellite communication. IEEE Journal of Selected Topics in Quantum Electronics,16(5), 1051–1057.

    Article  Google Scholar 

  24. Kumari, G., & Selwal, C. (2016). Performance optimization of return-to-zero DPSK modulation in inter-satellite optical wireless communication. In: 2016 international conference on recent advances and innovations in Engineering,Jaipur, India (pp. 1–5).

  25. Kumar, S., Gill, S., & Singh, K. (2018). Performance investigation of inter-satellite optical wireless communication (IsOWC) system employing multiplexing techniques. Wireless Personal Communications,98(1), 1461–1472.

    Article  Google Scholar 

  26. Chaudhary, S., Sharma, A., & Singh, V. (2019). Optimization of high speed and long haul inter-satellite communication link by incorporating differential phase shift key and orthogonal frequency division multiplexing scheme. Optik,176, 185–190.

    Article  Google Scholar 

  27. Kaur, R., & Kaur, H. (2018). Comparative analysis of chirped, AMI and DPSK modulation techniques in IS-OWC system. Optik,154, 755–762.

    Article  Google Scholar 

  28. Gill, H., Walia, G., & Grewal, N. (2019). Performance analysis of mode division multiplexing IS-OWC system using Manchester, DPSK and DQPSK modulation techniques. Optik,177, 93–101.

    Article  Google Scholar 

  29. Padhy, J., & Patnaik, B. (2018). DPSK and Manchester coding for inter-satellite optical wireless communication systems. In IEEE 5th international conference on emerging technologies and applied sciences, 22–23 Nov, 2018, Bangkok, Thailand.

  30. Singh, M., & Malhotra, J. (2019). Modeling and performance analysis of 400 Gbps CO-OFDM based inter-satellite optical wireless communication (IsOWC) system incorporating polarization division multiplexing with enhanced detection. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06870-5.

    Article  Google Scholar 

  31. Chaudhary, S., Tang, X., Sharma, A., Lin, B., Wei, X., & Parmar, A. (2019). A cost-effective 100 Gbps SAC-OCDMA–PDM based inter-satellite communication link. Optical and Quantum Electronics,51(5), 148–157.

    Article  Google Scholar 

  32. Singh, M., & Malhotra, J. (2019). A high-speed long-haul wavelength division multiplexing-based inter-satellite optical wireless communication link using spectral-efficient 2-D orthogonal modulation scheme. International Journal of Communication Systems. https://doi.org/10.1002/dac.4293.

    Article  Google Scholar 

  33. Nakashima, H., Oyama, T., Ohshima, C., Akiyama, Y., Hishida, T., & Tao, Z. (2017). Digital nonlinear compensation technologies in coherent optical communication systems. In Proceeding of OFC, USA, Paper W1G.5.

  34. Qin, J., Liu, C., Huang, Z., Su, S., & Zhang, Y. (2017). An improved CMA for dispersion compensation in 100 Gbps DP-QPSK optical signal transmission system. Optik,136, 480–486.

    Article  Google Scholar 

  35. Sklar, B. (2001). Digital communications: Fundamentals and applications. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  36. Tan, Q., & Chen, W. (2008). Analysis of inter-satellite homodyne BPSK optical communication link with optical field misalignment. In: Proceeding of PIERS, Hangzhou, China (pp. 1394–1398).

  37. Zhou, X., & Yu, J. (2009). Digital signal processing for coherent optical communication. In Proceeding of 18th annual wireless and optical communications conference, Newark, NJ, (pp. 1–5).

  38. Zhong, K., Zhou, X., Huo, J., Yu, C., Lu, C., & Lau, A. (2018). Digital signal processing for short-reach optical communications: A review of current technologies and future trends. Journal of Lightwave Technology,36(2), 377–400.

    Article  Google Scholar 

  39. Karaki, J., Giacoumidis, E., Grot, D., Guillossou, T., Gosset, C., Le Bidan, R., et al. (2013). Dual-polarization multi-band OFDM versus single-carrier DPQPSK for 100 Gb/s long-haul WDM transmission over legacy infrastructure. Optics Express,21, 16982.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. Dr. Truong Khang Nguyen, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam for giving his value suggestion, comments and support to complete this work as effective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, P., Singh, M., Malhotra, J. et al. Performance analysis of 160 Gbit/s single-channel PDM-QPSK based inter-satellite optical wireless communication (IsOWC) system. Wireless Netw 26, 3579–3590 (2020). https://doi.org/10.1007/s11276-020-02287-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02287-2

Keywords

Navigation