Skip to main content
Log in

Inter-slice handover management in a V2X slicing environment using bargaining games

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper provides a V2X slicing logical architecture based on Software Defined Networking. We devote a special concern to inter-slice mobility management. In this context, we propose a complete mobility solution that handles resources management through the use of bargaining games enhanced by a heuristic and particular swarm optimization algorithm. More specifically, this work proposes a resource borrowing scheme to readjust resources of an overloaded slice in case of a inter-slice handover. The borrowing procedure is modeled via two bargaining games. Performance analysis shows that our proposed solution guarantees fairness between V2X slices, reduces the probability of call dropping and blocking probabilities and enhances resource utilization. Moreover, a comparative study between the proposed games is provided and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 3GPP TS 23.285 v15.1.0: Technical specification group services and system aspects; architecture enhancements for V2X services, Release 14 (June 2018).

  2. Wang, J., Jiang, C., Zhang, K., Quek, T. Q., Ren, Y., & Hanzo, L. (2017). Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wireless Communications, 25(1), 122–132.

    Article  Google Scholar 

  3. Boban, M., Kousaridas, A., Manolakis, K., Eichinger, J., & Xu, W. (2018). Connected roads of the future: Use cases, requirements, and design considerations for vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 13(3), 110–123.

    Article  Google Scholar 

  4. Bessem, S., Marco, G., Vasilis, F., Dirk von, H., & Paul, A. (2016). SDN for 5g mobile networks: Norma perspective. In Proceedings of the 11th International Conference on Cognitive Radio Oriented Wireless Networks, CROWNCOM , Grenoble, France.

  5. Bailey, S., Bansal, D., Dunbar, L., Hood, D., Kis, Z. L., MackCrane, B., et al. (2013). Sdn architecture overview. Open Networking Foundation, Ver, 1.

  6. Jiang, M., Condoluci, M., & Mahmoodi, T. (2017). Network slicing in 5g: An auction-based model. In Proceedings of the IEEE International Conference on Communications (ICC) (pp. 1–6).

  7. Leconte, M., Paschos, G. S., Mertikopoulos, P., & Kozat, U. C. (2018). A resource allocation framework for network slicing. In Proccedings of the IEEE Conference on Computer Communications INFOCOM (pp. 2177–2185).

  8. Gebremariam, A. A., Chowdhury, M., Usman, M., Goldsmith, A., & Granelli, F. (2018). Softslice: Policy-based dynamic spectrum slicing in 5g cellular networks. In Proceedings of IEEE International Conference on Communications (ICC) (pp. 1–6).

  9. Tseliou, G., Adelantado, F., & Verikoukis, C. (2014). Resources negotiation for network virtualization in LTE-A networks. In: Proceedings of the IEEE International Conference on Communications (ICC) (pp. 3142–3147).

  10. Gadallah, Y., Ahmed, M. H., & Elalamy, E. (2017). Dynamic LTE resource reservation for critical M2M deployments. Pervasive and Mobile Computing, 40, 541–555.

    Article  Google Scholar 

  11. Kwak, J., Moon, J., Lee, H. W., & Le, L. B. (2017). Dynamic network slicing and resource allocation for heterogeneous wireless services. In Proceedings of the 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–5).

  12. Alfoudi, A. S. D., Newaz, S. S., Otebolaku, A., Lee, G. M., & Pereira, R. (2019). An efficient resource management mechanism for network slicing in a LTE network. IEEE Access, 7, 89,441–89,457.

    Article  Google Scholar 

  13. Caballero, P., Banchs, A., de Veciana, G., & Costa-Pérez, X. (2017). Network slicing games: Enabling customization in multi-tenant networks. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications (pp. 1–9).

  14. Aijaz, A. (2017). Hap-SliceR: A radio resource slicing framework for 5G networks with haptic communications. IEEE Systems Journal, 12(3), 2285–2296.

    Article  Google Scholar 

  15. Li, Y., Liu, J., Cao, B., & Wang, C. (2018). Joint optimization of radio and virtual machine resources with uncertain user demands in mobile cloud computing. IEEE Transactions on Multimedia, 20(9), 2427–2438.

    Article  Google Scholar 

  16. Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77–92.

    Article  Google Scholar 

  17. Kulavaratharasah, M. D., & Aghvami, A. (1999). Teletraffic performance evaluation of microcellular personal communication networks (PCN’s) with prioritized handoff procedures. IEEE Transactions on Vehicular Technology, 48(1), 137–152.

    Article  Google Scholar 

  18. Oliveira, C., Kim, J. B., & Suda, T. (1998). An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE Journal on Selected Areas in Communications, 16(6), 858–874.

    Article  Google Scholar 

  19. Choi, S., & Shin, K. G. (1998). Predictive and adaptive bandwidth reservation for hand-offs in QoS-sensitive cellular networks. In Proceedings of ACM SIGCOMM computer communication review (pp. 155–166).

  20. Zhuang, W., Bensaou, B., & Chua, K. C. (2000). Adaptive quality of service handoff priority scheme for mobile multimedia networks. IEEE Transactions on Vehicular Technology, 49(2), 494–505.

    Article  Google Scholar 

  21. Cruz-Pérez, F. A., & Ortigoza-Guerrero, L. (2004). Flexible resource allocation strategies for class-based qos provisioning in mobile networks. IEEE Transactions on Vehicular Technology, 53(3), 805–819.

    Article  Google Scholar 

  22. Levine, D. A., Akyildiz, I. F., & Naghshineh, M. (1997). A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Transactions on Networking, 5(1), 1–12.

    Article  Google Scholar 

  23. Ei-Kadi, M., Olariu, S., & Abdel-Wahab, H. (2002). Rate-based borrowing scheme for QOS provisioning in multimedia wireless networks. IEEE Transactions on Parallel and Distributed Systems, 13(2), 156–166.

    Article  Google Scholar 

  24. Li, Y., Xia, S., Cao, B., Liu, Q., et al. (2019). Lyapunov optimization based trade-off policy for mobile cloud offloading in heterogeneous wireless networks. IEEE Transactions on Cloud Computing.

  25. Alagu, S., & Meyyappan, T. (2012). Efficient utilization of channels using dynamic guard channel allocation with channel borrowing strategy in handoffs. arXiv preprint arXiv:1206.3375.

  26. Pan, M., Liang, S., Xiong, H., Chen, J., & Li, G. (2006). A novel bargaining based dynamic spectrum management scheme in reconfigurable systems. In Proceedings of the international conference on systems and networks communications (ICSNC’06) (pp. 54–54).

  27. Yan, Y., Huang, J., & Wang, J. (2012). Dynamic bargaining for relay-based cooperative spectrum sharing. IEEE Journal on Selected Areas in Communications, 31(8), 1480–1493.

    Article  Google Scholar 

  28. Guo, J., Liu, F., Lui, J. C., & Jin, H. (2015). Fair network bandwidth allocation in IaaS datacenters via a cooperative game approach. IEEE/ACM Transactions on Networking, 24(2), 873–886.

    Article  Google Scholar 

  29. Elayoubi, S., & Maternia, M. (2016). 5G-PPP use cases and performance evaluation modeling. 5G PPP white paper.

  30. Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24(6), 38–45.

    Article  Google Scholar 

  31. Campolo, C., Molinaro, A., Iera, A., Fontes, R. R., & Rothenberg, C. E. (2018). Towards 5G network slicing for the v2x ecosystem. In Proceedings of the 4th IEEE conference on network softwarization and workshops (NetSoft) (pp. 400–405).

  32. Šeremet, I., & Čaušević, S. (2019). Benefits of using 5G network slicing to implement vehicle-to-everything (V2X) technology. In Proceedings of the 18th International Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1–6).

  33. Khan, H., Luoto, P., Bennis, M., & Latva-aho, M. (2018). On the application of network slicing for 5G-V2X. In European Wireless 2018; 24th European Wireless Conference, VDE (pp. 1–6).

  34. Ersue, M. (2013). ETSI NFV management and orchestration-an overview. In Proceedings of 88th IETF meeting.

  35. Group, I. W., et al. (2010). IEEE standard for information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements–part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: Wireless access in vehicular environments. IEEE Std 802(11).

  36. Molina-Masegosa, R., & Gozalvez, J. (2017). LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30–39.

    Article  Google Scholar 

  37. Nadia, M., Rola, N., & Samir, T. (2019). SDN based fast and soft handover (FSH) for a shuttle bus monitoring system. In: Proceedings of the international symposium on computers and communications (ISCC).

  38. Mouawad, N., Naja, R., & Tohme, S. (2019). Inter-slice mobility management solution in v2x environment. In: Proceedings of the 15th international conference on wireless and mobile, networking and communications (to appear).

  39. Gibbons, R. (1992). A primer in game theory. London: Harvester Wheatsheaf.

    MATH  Google Scholar 

  40. Li, Y., Liao, C., Wang, Y., & Wang, C. (2015). Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Transactions on Wireless Communications, 14(8), 4093–4104.

    Article  Google Scholar 

  41. Yaïche, H., Mazumdar, R. R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions on Networking, 8(5), 667–678.

    Article  Google Scholar 

  42. Grosu, D., Chronopoulos, A. T., & Leung, M. Y. (2002). Load balancing in distributed systems: An approach using cooperative games. In Ipdps (p. 52).

  43. Han, Z., Ji, Z., & Liu, K. R. (2005). Fair multiuser channel allocation for OFDMA networks using nash bargaining solutions and coalitions. IEEE Transactions on Communications, 53(8), 1366–1376.

    Article  Google Scholar 

  44. Rhee, W., & Cioffi, J. M. (2000). Increase in capacity of multiuser ofdm system using dynamic subchannel allocation. In Proceedings of the 51st IEEE Vehicular Technology Conference, VTC-Spring (pp. 1085–1089).

  45. Stefanescu, A., & Stefanescu, M. V. (1984). The arbitrated solution for multi-objective convex-programming. Revue Roumaine de Mathematiques Pures et Appliquées, 29(7), 593–598.

    MathSciNet  MATH  Google Scholar 

  46. Nazim Nguyen-Vuong, Q. T., Ghamri-Doudane, Y., & Agoulmine, N. (2008). On utility models for access network selection in wireless heterogeneous networks. In Network Operations and Management Symposium NOMS (pp 144–151). IEEE.

  47. Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, Citeseer, 4, 1942–1948.

  48. Fontes, R. R., Afzal, S., Brito, S. H., Santos, M. A., & Rothenberg, C. E. (2015). Mininet-wifi: Emulating software-defined wireless networks. In Proceeding of the 11th international conference on network and service management (CNSM) (pp. 384–389).

  49. Tomonori, F. (2013). Introduction to RYU SDN framework. Open Networking Summit.

  50. Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). Sumo–simulation of urban mobility: An overview. In: Proceedings of the 3rd international conference on advances in system simulation.

  51. Han, Gh, Chen Xr, Yu Y, & Yq, Li. (2012). A study of microscopic traffic simulation based on sumo platform. Computer Engineering and Science, 34(7), 195–198.

    Google Scholar 

  52. Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination. Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation.

    Google Scholar 

  53. Koza, J. R. (1997). Genetic programming.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Mouawad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouawad, N., Naja, R. & Tohme, S. Inter-slice handover management in a V2X slicing environment using bargaining games. Wireless Netw 26, 3883–3903 (2020). https://doi.org/10.1007/s11276-020-02292-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02292-5

Keywords

Navigation