Skip to main content
Log in

Performance analysis of IEEE802.11e EDCA wireless networks under finite load

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the majority of IEEE 802.11 series wireless networks, the quality of service (QoS) requirements are related to the queueing behavior of buffers in mobile stations, e.g., the buffer stability, overflow probability and packet delay, etc. Thus, it is important to accurately evaluate the performance of such networks in non-saturation environments. In this paper, we analyze the IEEE 802.11e enhanced distributed channel access (EDCA) wireless network under finite load. We develop an analysis model by a 3-dimensional Markov chain and derive its steady state distribution using the spectral method. We present a variety of performance measures including the buffer stability, the collision probability, the non-saturation throughput and the probability generating function of head-of-line delay (HoL-delay). For IEEE 802.11e EDCA wireless networks, these results are very useful in optimizing the network architecture and system parameters under the given QoS requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IEEE standard for information technology-telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part II: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE standard 802.11-2012 (Revision of IEEE standard 802.11-2007)

  2. Banchs, A. L., & Vollero, L. (2006). Throughput analysis and optimal configuration of IEEE 802.11e EDCA. Computer Networks, 50(11), 1749–1768.

    Article  Google Scholar 

  3. Abu-Sharkn, O. M. F., & Tewfik, A. H. (2008). Toward accurate modeling of the IEEE 802.11e EDCA under finite load and error-prone channel. IEEE Transactions on Wireless Communications, 7(7), 2560–2570.

    Article  Google Scholar 

  4. Bianchi, G. (2000). Performance analysis of the IEEE802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  5. Chen, X., Zhai, H., Tian, X., & Fang, Y. (2006). Supporting QoS in IEEE 802.11e wireless LANs. IEEE Transactions on Wireless Communications, 5(8), 2217–2227.

    Article  Google Scholar 

  6. Deng, D. J., & Yen, H. C. (2005). Quality-of-Service provisioning system for multimedia transmission in IEEE 802.11 Wireless LANs. IEEE Journal on Selected Areas in Communications, 23(6), 1240–1252.

    Article  Google Scholar 

  7. Engelstad, P. E., & Osterbo, O. N. (2000). Queueing delay analysis ofIEEE 802.11e EDCA. IFIP WONS, 1, 123–133.

    Google Scholar 

  8. Engelstad, P. E., & Osterbo, O. N. (2006). Analysis of total delay of the IEEE 802.11e EDCA and 802.11 DCF. Proceedings of IEEE International Conference on Communications (ICC ’06), 2, 553–559.

    Google Scholar 

  9. Feng, W. (2016). On a spectral analysis of IEEE802.11 queueing networks. Wireless Networks, 22, 159–173.

    Article  Google Scholar 

  10. Gail, H. R., Hantler, S. L., Konheim, A. G., & Taylor, B. A. (1994). An analysis of a class of telecommunications models. Performance Evaluation, 21, 151–161.

    Article  MathSciNet  Google Scholar 

  11. Gail, H. R., Hantler, S. L., Sidi, M., & Taylor, B. A. (1995). Linear independence of root equations for M/G/1 type Markov chains. Queueing Systems, 20, 321–339.

    Article  MathSciNet  Google Scholar 

  12. Gail, H. R., Hantler, S. L., & Taylor, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability, 28, 114–165.

    Article  MathSciNet  Google Scholar 

  13. Hui, J., & Devetsikiotis, M. (2005). A unified model for the performance analysis of IEEE 802.11e EDCA. IEEE Transactions on Communications, 53(9), 1489–1510.

    Article  Google Scholar 

  14. Inan, I., Keceli, F., & Ayanoglu, E. (2009). Analysis of the 802.11e enhanced distributed channel access function. IEEE Transactions on Communications, 57(6), 1753–1764.

    Article  Google Scholar 

  15. Kim, T. O., Kim, J. K., & Choi, B. D. (2008). Performance analysis of IEEE 802.11 DCF and IEEE 802.11e EDCA in non-saturation condition. IEICE Transactions on Communications, 91(4), 1122–1131.

    Article  Google Scholar 

  16. Lee, J. Y., & Lee, H. S. (2009). A performance analysis model for IEEE802.11e EDCA under saturation condition. IEEE Transactions on Communications, 57(1), 56–63.

    Article  Google Scholar 

  17. Liu, J., & Niu, Z. (2007). Delay analysis of IEEE 802.11e EDCA under unsaturated conditions. In Proceedings of IEEE wireless communication and networking conference (WCNC) (pp. 430–434).

  18. Min, G., Hu, J., & Woodward, M. E. (2011). Performance modelling and analysis of the TXOP scheme in wireless multimedia networks with heterogeneous stations. IEEE Transactions on Wireless Communications, 10(12), 4130–4139.

    Article  Google Scholar 

  19. Mišić, J., Rashwand, S., & Mišić, V. B. (2012). Analysis of impact of TXOP allocation on IEEE802.11e EDCA under variable network load. IEEE Transactions on Parallel and Distributed Systems, 23(5), 785–799.

    Article  Google Scholar 

  20. Nishimura, S., & Jiang, Y. (2000). Spectral analysis of the matrix generating function for an MAP/SM/1 queue. Communications in Statistics. Stochastic Models, 16, 99–120.

    Article  MathSciNet  Google Scholar 

  21. Nishimura, S. (2000). A spectral analysis for a MAP/D/1 queue. In G. Latouche & P. Taylor (Eds.), Advances in algorithmic methods for stochastic models (pp. 279–294). New York: Notable Publications Inc.

    Google Scholar 

  22. Peng, F., Alnuweiri, H. M., & Leung, V. C. M. (2006). Analysis of burst transmission in IEEE 802.11e wireless LANs. In IEEE ICC ’06 (pp. 535–539).

  23. Rashwand, S., & Mišić, J. (2010). Impacts of node population and TXOP on stable operation of IEEE 802.11e EDCA. In Proceedings IEEE IWCMC (pp. 153–157).

  24. Rashwand, S., & Mišić, J. (2011). IEEE802.11e EDCA under bursty traffic-how much TXOP can improve performance. IEEE Transactions on Vehicular Technology, 60(3), 1099–1115.

    Article  Google Scholar 

  25. Robinson, J. W., & Randhawa, T. S. (2004). Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE Journal on Selected Areas in Communications, 22, 917–928.

    Article  Google Scholar 

  26. Serrano, P., Banches, A., & Azcorra, A. (2007). A throughput and delay model for IEEE 802.11e EDCA under non saturation. Wireless Personal Communications, 43(2), 467–479.

    Article  Google Scholar 

  27. Tao, Z., & Panwar, S. (2006). Throughput and delay analysis for the IEEE 802.11e enhanced distribution channel access. IEEE Transactions on Communications, 50(4), 596–603.

    Google Scholar 

  28. Tinnirello, I., & Choi, S. (2005). Temporal fairness provisioning in multi-rate contention-based 802.11e WLANs. In Proceedings of IEEE WoWMoM’05.

  29. Xiao, Y. (2005). Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e LANs. IEEE Transactions on Wireless Communications, 4(4), 1506–1515.

    Article  Google Scholar 

  30. Zhao, Q., Tsang, D. H. K., & Sakurai, T. (2013). A scalable and accurate nonsaturated IEEE 802.11e EDCA model for an arbitrary buffer size. IEEE Transactions on Mobile Computing, 12(12), 2455–2469.

    Article  Google Scholar 

  31. Zhu, H., & Chlamtac, I. (2005). Performance analysis for IEEE 802.11e EDCA service differentiation. IEEE Transactions on Wireless Communications, 4(4), 1779–1788.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his appreciations to the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The proof of Proposition 1.

Proof

Without loss of generality, we consider the case where \(\eta =1\). For the claim (i), note that \(B_1=A_{3,max}+A_{2,max}\), and

$$\begin{aligned}&p_{T_{1,0}^f}(k)\equiv P(T_{1,0}^f=k)\\&\quad =\left\{ \begin{array}{lll} \beta _1Q_1^{k-1}R_1 &{} \text{ if } k\ge A_{3,max}+A_{2,max}-1 \\ 0 &{} \text{ otherwise } \\ \end{array} \right. \end{aligned}$$

where \(Q_1^{A_{3,max}+A_{2,max}-1}R_1=f_3^{A_{3,max}}f_2^{A_{2,max}}\beta _1^T\). We have

$$\begin{aligned} \psi _{1,0}^f(z)=\sum _{k=0}^{\infty }z^kp_{T_{1,0}^f}(k)=(f_3z)^{A_{3,max}}(f_2z)^{A_{2,max}})\\&\quad \beta _1(I_1-zQ_1)^{-1}\beta _1^T \end{aligned}$$

and

$$\begin{aligned} E[T_{1,0}^f]&= {} (\psi _{1,0}^f(z))'_{z=1}\\&=f_3^{A_{3,max}}f_2^{A_{2,max}}\beta _1(I_1-Q_1)^{-2}k)\\&\quad ((A_{3,max}+A_{2,max})(I_1-Q_1)+Q_1)\beta _1^T. \end{aligned}$$

The direct calculation yields

$$\begin{aligned} (I_1-Q_1)^{-1}=\left[ \begin{array}{ccccccccccc} \frac{1}{f_3^{A_{3,max}}f_2^{A_{2,max}}} &{} \frac{1}{f_3^{A_{3,max}-1}f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2} \\ \frac{1-f_3^{A_{3,max}-1}f_2^{A_{2,max}}}{f_3^{A_{3,max}}f_2^{A_{2,max}}} &{} \frac{1}{f_3^{A_{3,max}-1}f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \ddots &{} \vdots \\ \frac{1-f_2^{A_{2,max}}}{f_3^{A_{3,max}}f_2^{A_{2,max}}} &{} \frac{1-f_2^{A_{2,max}}}{f_3^{A_{3,max}-1}f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \ddots &{} \vdots \\ \frac{1-f_2}{f_3^{A_{3,max}}f_2^{A_{2,max}}} &{} \frac{1-f_2}{f_3^{A_{3,max}-1}f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2^{A_{2,max}}} &{} \cdots &{} \frac{1}{f_2} \\ \end{array} \right] . \end{aligned}$$

Substituting it into \(E[T_{1,0}^f]\), we obtain the claim (i). Next, let \(p_{T_{1,B_1}^f}(k)=P(T_{1,B_1}^f=k, I_{\{T_{1,B_1}^f<T_{1,0}^f\}})\). It follows from the transition matrix \(P_{1}^f\) of the Markov chain \(Y_1^f\) that

$$\begin{aligned} p_{T_{1,B_1}^f}(k)=\left\{ \begin{array}{lll} f_3^{k-1}(1-f_3) &{} \text{ if } 1\le k\le A_{3,max} \\ f_3^{A_{3,max}}f_2^{k-A_{3,max}-1}(1-f_2) &{} \text{ if } A_{3,max}< k\le A_{3,max}+A_{2,max} \\ 0 &{} \text{ otherwise }. \\ \end{array} \right. \end{aligned}$$

Using this result, the claim (ii) can be easily derived. Finally, we can establish the assert (iii) according to the following two facts: (1) the PGF of the sojourn time at the state \(B_1\) is \(\phi _{1,su}(z)+\phi _{1,co}(z)\), and the PGF of the sojourn time at the other states is z; (2) \(P_{1,B_1}^{f}\) is the rate that the freezing countdown process \(Y_1^f\) visits the state \(B_1\) before reach the absorption state 0. This completes the proof. \(\square \)

Appendix 2

The sub-matrices of the transition probability matrix \(\mathbf{P}_{\eta }\)

$$\begin{aligned} {\bar{\mathbf{A}}}_{0}^{\eta }&= {} \left[ \begin{array}{lllll} g_{\eta }r_{\eta ,0}+(1-g_{\eta })q_{\eta ,0} &{} 0 &{} \cdots &{} 0 \\ \alpha ^{(1)}_{\eta ,0} &{} 0 &{} \cdots &{} 0 \\ \alpha ^{(2)}_{\eta ,0} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \alpha ^{(\omega _{\eta ,0}-1)}_{\eta ,0} &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,0}\times \omega _{\eta ,0}} \quad \text{ and } \rm{ for } k\ge 1 \\ {\bar{\mathbf{A}}}_{k}^{\eta }&= {} \left[ \begin{array}{cccccccccccc} g_{\eta }r_{k}+\frac{(1-g_{\eta })q_{\eta ,k}}{\omega _{\eta ,0}} &{} \frac{(1-g_{\eta })q_{\eta ,k}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{(1-g_{\eta })q_{\eta ,k}}{\omega _{\eta ,0}} &{} 0 &{} \cdots &{} 0 \\ \alpha ^{(1)}_{\eta ,k} &{} 0 &{} \cdots &{} 0 &{} 0 &{} \cdots &{} 0 \\ \alpha ^{(2)}_{\eta ,k} &{} 0 &{} \cdots &{} 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ \alpha ^{(\omega _{\eta ,0}-1)}_{\eta ,k} &{} 0 &{} \cdots &{} 0 &{} 0 &{} \cdots &{} 0 \\ \end{array} \right] _{\omega _{\eta ,0} \times \omega _{\eta ,k}.}\\ {\bar{\mathbf{B}}}_{0}^{\eta }&= {} \left[ \begin{array}{llllll} {\bar{\mathbf{B}}}_{00} \\ {\bar{\mathbf{B}}}_{10} \\ \vdots \\ {\bar{\mathbf{B}}}_{m_{\eta }0} \\ \end{array} \right] \quad \text{ and } \\ \mathbf{B}_{0}^{\eta }&= {} \left[ \begin{array}{llll} \mathbf{B}_{00} &{} 0 &{} \cdots &{} 0 \\ \mathbf{B}_{10} &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{B}_{m_{\eta }0} &{} 0 &{} \cdots &{} 0 \end{array} \right] _\mathrm{(m_{\eta }+1)\times (m_{\eta }+1)} \end{aligned} $$

where for \(i=0,1,\ldots ,m_{\eta },\)

$$\begin{aligned} {\bar{\mathbf{B}}}_{i0}&= {} \mathbf{B}_{i0}=\left[ \begin{array}{ccccccccc} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i}\times \omega _{\eta ,0}.}\\ \mathbf{B}_{k}^{\eta }&= {} \left[ \begin{array}{lcccccccccccc} \mathbf{B}^{(k)}_{00} &{} \mathbf{B}^{(k)}_{01} &{} 0 &{} \cdots &{} 0 &{} 0 \\ \mathbf{B}^{(k)}_{10} &{} \mathbf{B}^{(k)}_{11} &{} \mathbf{B}^{(k)}_{12} &{} \cdots &{} 0 &{} 0 \\ \mathbf{B}^{(k)}_{20} &{} 0 &{} \mathbf{B}^{(k)}_{22} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{B}^{(k)}_{m_{\eta }-10} &{} 0 &{} 0 &{} \cdots &{} \mathbf{B}^{(k)}_{m_{\eta }-1m_{\eta }-1} &{} \mathbf{B}^{(k)}_{m_{\eta }-1m_{\eta }} \\ \mathbf{B}^{(k)}_{m_{\eta }0} &{} 0 &{} 0 &{} \dots &{} 0 &{} \mathbf{B}^{(k)}_{m_{\eta }m_{\eta }} \end{array} \right] \end{aligned}$$

where

$$\begin{aligned} \mathbf{B}^{(k)}_{00}&= {} \left[ \begin{array}{ccccccccccccc} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} \\ d^*_{\eta ,k-1} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-1} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-1} &{} 0 \end{array} \right] _{\omega _{\eta ,0} \times \omega _{\eta ,0},}\\ {\mathbf{B}}^{(k)}_{i0}&= {} \left[ \begin{array}{cccccccccc} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,k}^{(1)}}{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,0},} \\ \mathbf{B}^{(k)}_{ii}&= {} \left[ \begin{array}{cccccccccccccccc} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ d^*_{\eta ,k-1} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-1} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-1} &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,i},} \\ \mathbf{B}^{(k)}_{ii+1}&= {} \left[ \begin{array}{ccccccccc} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,i+1}} &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,i+1}} &{} \cdots &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,i+1}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,i+1},}\\ \mathbf{B}^{(k)}_{m_{\eta }m_{\eta }}&= {} \left[ \begin{array}{ccccccccccccccccc} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,m_{\eta }}} &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,m_{\eta }}} &{} \cdots &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,m_{\eta }}} &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-1}}{\omega _{\eta ,m_{\eta }}} \\ d^*_{\eta ,k-1} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-1} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-1} &{} 0 \end{array} \right] _{\omega _{\eta ,m_{\eta }} \times \omega _{\eta ,m_{\eta }}.} \end{aligned}$$

Furthermore,

$$\begin{aligned} {\bar{\mathbf{K}}}_{0}^{\eta }&= {} \left[ \begin{array}{cccccccccccccccc} {\bar{\mathbf{K}}}_{00} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \end{array} \right] _\mathrm{(m_{\eta }+1) \times 1} \quad \text{ where } \\ {\bar{\mathbf{K}}}_{00}&= {} \left[ \begin{array}{ccccccccccccccc} \frac{g_{\eta }d_{\eta ,0}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,0}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,0}^{(N_{\eta })}}{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{}\vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,0}\times \omega _{\eta ,0}.} \end{aligned}$$

For \(k=0,1 \cdots , N_{\eta }-2\),

$$\begin{aligned} \mathbf{K}_{k}^{\eta }&= {} \left[ \begin{array}{cccccccccccccc} \mathbf{K}^{(k)}_{00} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0} &{} \mathbf{0}&{} \cdots &{} \mathbf{0} \end{array} \right] _{(m_{\eta }+1) \times (m_{\eta }+1),} \quad \text{ where }\\ \mathbf{K}^{(k)}_{00}&= {} \left[ \begin{array}{ccccccccccccc} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{}\vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,0}\times \omega _{\eta ,0}.} \end{aligned}$$

and

$$\begin{aligned} \mathbf{K}_{(N-1)}^{\eta }&= {} \left[ \begin{array}{cccccccccccccccccc} \mathbf{K}^{(N-1)}_{00} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \\ \mathbf{K}^{(N-1)}_{10} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{K}^{(N-1)}_{m_{\eta }0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \end{array} \right] _\mathrm{(m_{\eta }+1)\times (m_{\eta }+1)} \quad \text{ where }\\ \mathbf{K}^{(N_{\eta }-1)}_{i0}&= {} \left[ \begin{array}{cccccccccccccccc} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,0}^{(1)}}{\omega _{\eta ,0}}\\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,0}.} \end{aligned}$$

and

$$\begin{aligned} \mathbf{K}^{(N_{\eta }-1)}_{00}&= {} \left[ \begin{array}{cccccccccccccccc} \frac{g_{\eta }d_{\eta ,N_{\eta }-1}^{(N_{\eta })} }{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,N_{\eta }-1}^{(N_{\eta })} }{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,N_{\eta }-1}^{(N_{\eta })} }{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{}\ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,0} \times \omega _{\eta ,0}.} \end{aligned}$$

Finally, for \(k=N_{\eta },N_{\eta }+1,\ldots \)

$$\begin{aligned} \mathbf{K}_{k}^{\eta }&= {} \left[ \begin{array}{cccccccccccccc} \mathbf{K}^{(k)}_{00} &{} \mathbf{K}^{(k)}_{01} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{K}^{(k)}_{10} &{} \mathbf{K}^{(k)}_{11} &{} \mathbf{K}^{(k)}_{12} &{} \cdots &{} \mathbf{0} &{} \mathbf{0} \\ \mathbf{K}^{(k)}_{20} &{} \mathbf{0} &{} \mathbf{K}^{(k)}_{22} &{} \cdots &{} \mathbf{0} &{} \mathbf{0} \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{K}^{(k)}_{m_{\eta }-10} &{} \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{K}^{(k)}_{m_{\eta }-1m_{\eta }-1} &{} \mathbf{K}^{(k)}_{m_{\eta }-1m_{\eta }} \\ \mathbf{K}^{(k)}_{m_{\eta }0} &{} \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{K}^{(k)}_{m_{\eta }m_{\eta }} \end{array} \right] \end{aligned}$$

where

$$\begin{aligned} \mathbf{K}^{(k)}_{00}&= {} \left[ \begin{array}{ccccccccccc} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k}^{(N_{\eta })}}{\omega _{\eta ,0}} \\ d^*_{\eta ,k-N_{\eta }} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-N_{\eta }} &{} 0 \end{array} \right] _{\omega _{\eta ,0} \times \omega _{\eta ,0}} \end{aligned}$$

and

$$\begin{aligned} \mathbf{K}^{(k)}_{i0}&= {} \left[ \begin{array}{ccccccccccc} \frac{g_{\eta }d_{\eta ,k-N_{\eta }+1}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k-N_{\eta }+1}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \cdots &{} \frac{g_{\eta }d_{\eta ,k-N_{\eta }+1}^{(N_{\eta })}}{\omega _{\eta ,0}} &{} \frac{g_{\eta }d_{\eta ,k-N_{\eta }+1}^{(N_{\eta })}}{\omega _{\eta ,0}} \\ 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,0},}\\ \mathbf{K}^{(k)}_{ii}&= {} \left[ \begin{array}{ccccccccccc} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ d^*_{\eta ,k-N_{\eta }} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-N_{\eta }} &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,i},}\\ \mathbf{K}^{(k)}_{ii+1}&= {} \left[ \begin{array}{ccccccccc} \frac{(1-g_{\eta })d^{co}_{\eta ,k-N_{\eta }}}{\omega _{\eta ,i+1}} &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-N_{\eta }}}{\omega _{\eta ,i+1}} &{} \cdots &{} \frac{(1-g_{\eta })d^{co}_{\eta ,k-N_{\eta }}}{\omega _{\eta ,i+1}} \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i} \times \omega _{\eta ,i+1},}\\ \mathbf{K}^{(k)}_{m_{\eta }m_{\eta }}&= {} \left[ \begin{array}{ccccccccc} \frac{(1-g_{\eta })d^{co}_{k-N_{\eta }}}{\omega _{\eta ,m_{\eta }}} &{} \frac{(1-g_{\eta })d^{co}_{k-N_{\eta }}}{\omega _{\eta ,m_{\eta }}} &{} \cdots &{} \frac{(1-g_{\eta })c_{k-N_{\eta }}}{\omega _{\eta ,m_{\eta }}} &{} \frac{(1-g_{\eta })d^{co}_{k-N_{\eta }}}{\omega _{\eta ,m_{\eta }}} \\ d^*_{\eta ,k-N_{\eta }} &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} d^*_{\eta ,k-N_{\eta }} &{} \cdots &{} 0 &{} 0 &{} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} d_{\eta ,k-N_{\eta }} &{} 0 \end{array} \right] _{\omega _{\eta ,m_{\eta }} \times \omega _{\eta ,m_{\eta }}.} \end{aligned}$$

Appendix 3

(1) The definition of the sub-matrices of\(K_{\eta }(z)\)

$$\begin{aligned} K_{00}(z)&= {} \left[ \begin{array}{cccccccc} \frac{g_{\eta }}{\omega _{\eta ,0}}d^{(N_{\eta })}_{\eta }(z) &{} \frac{g_{\eta }}{\omega _{\eta ,0}}d^{(N_{\eta })}_{\eta }(z) &{} \cdots &{} \frac{g_{\eta }}{\omega _{\eta ,0}}d^{(N_{\eta })}_{\eta }(z) &{} \frac{g_{\eta }}{\omega _{\eta ,0}}d^{(N_{\eta })}_{\eta }(z) \\ z^{N_{\eta }}d_{\eta }^*(z) &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} z^{N_{\eta }}d_{\eta }^*(z) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} z^{N_{\eta }}d_{\eta }(z) &{} 0 \end{array} \right] _{\omega _{\eta ,0}\times \omega _{\eta ,0}} \end{aligned}$$

For \(i=1,\ldots , m_{\eta },\)

$$\begin{aligned} K_{i0}(z)&= {} \left[ \begin{array}{cccccccc} \frac{g_{\eta }}{\omega _{\eta ,0}}z^{N_{\eta }-1}d_{\eta }^{(1)}(z) &{} \frac{g_{\eta }}{\omega _{\eta ,0}}z^{N_{\eta }-1}d_{\eta }^{(1)}(z) &{} \cdots &{} \frac{g_{\eta }}{\omega _{\eta ,0}}z^{N_{\eta }-1}d_{\eta }^{(1)}(z) \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i}\times \omega _{\eta ,0}} \end{aligned}$$

and for \(i=1,\ldots , m_{\eta }-1,\)

$$\begin{aligned} K_{ii+1}(z)&= {} \left[ \begin{array}{cccccccc} \frac{g_{\eta }}{\omega _{\eta ,i+1}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \frac{g_{\eta }}{\omega _{\eta ,i+1}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \cdots &{} \frac{g_{\eta }}{\omega _{\eta ,i+1}}z^{N_{\eta }}d_{\eta }^{co}(z) \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i}\times \omega _{\eta ,i+1},}\\ K_{ii}(z)&= {} \left[ \begin{array}{cccccccc} 0 &{} 0 &{} \cdots &{} 0 &{} 0 \\ z^{N_{\eta }}d_{\eta }^*(z) &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} z^{N_{\eta }}d_{\eta }^*(z) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} z^{N_{\eta }}d_{\eta }(z) &{} 0 \end{array} \right] _{\omega _{\eta ,i}\times \omega _{\eta ,i}} \end{aligned}$$

and

$$\begin{aligned} K_{m_{\eta }m_{\eta }}(z)=\left[ \begin{array}{cccccccc} \frac{g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \frac{g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \cdots &{} \frac{g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \frac{g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z)\\ z^{N_{\eta }}d_{\eta }^*(z) &{} 0 &{} \cdots &{} 0 &{} 0 \\ 0 &{} z^{N_{\eta }}d_{\eta }^*(z) &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} z^{N_{\eta }}d_{\eta }(z) &{} 0 \end{array} \right] _{{\omega _{\eta ,m_{\eta }}\times \omega _{\eta ,m_{\eta }}.}} \end{aligned}$$

(2) The proof of Lemma 1. (i) \(K_{\eta }(z)\) can be derived directly from the definition of the matrixes \(K_k^{\eta }\). (ii) Substituting \(z=1\) into \(K_{\eta }(z)\) yields the matrix \(K_{\eta }(1)\). \(K_{\eta }(1)=\)

figure b

Since \(K_{\eta }(1)\) is irreducible stochastic, we can verify that \(z=1\) is a zero point of \(det\varDelta _{\eta }(z)\) by direct determinant calculation. (iii) From the equation \({\varvec{\xi }}_{\eta }={\varvec{\xi }}_{\eta }K_{\eta }(1)\), we have

$$\begin{aligned}&\left\{ \begin{array}{llll} \xi _{0k-1}^{\eta }=\xi _{0k}^{\eta }+\frac{g_{\eta }}{\omega _{\eta ,0}}(\xi _{00}^{\eta }+\xi _{10}^{\eta }+\cdots +\xi _{m_{\eta }0}^{\eta }) &{} \text{ for } k=1,\ldots ,\omega _{\eta ,0}-1, \\ \xi _{0\omega _{\eta ,0}-1}^{\eta }=\frac{g_{\eta }}{\omega _{\eta ,0}}(\xi _{00}^{\eta }+\xi _{10}^{\eta }+\cdots +\xi _{m_{\eta }0}^{\eta }), &{}\end{array} \right. \\&\left\{ \begin{array}{llll} \xi _{i+1k-1}^{\eta }=\xi _{i+1k}^{\eta }+\frac{1-g_{\eta }}{\omega _{\eta ,i+1}}\xi _{i0}^{\eta } &{} \text{ for } k=1,\ldots ,\omega _{\eta ,i+1}-1;\ i=0, \ldots m_{\eta }-2, \\ \xi _{i+1\omega _{\eta ,i+1}-1}^{\eta }=\frac{1-g_{\eta }}{\omega _{\eta ,i+1}}\xi _{i0}^{\eta }&{} \end{array} \right. \\&\left\{ \begin{array}{llll} \xi _{m_{\eta }k-1}^{\eta }=\xi _{m_{\eta }k}^{\eta }+\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}(\xi _{m_{\eta }-10}^{\eta }+\xi _{m_{\eta }0}^{\eta }) &{} \text{ for } k=1,\ldots ,\omega _{\eta ,m_{\eta }}-1 \\ \xi _{m\omega _{m_{\eta }}-1}^{\eta }=\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}(\xi _{m_{\eta }-10}^{\eta }+\xi _{m_{\eta }0}^{\eta }). &{} \end{array} \right. \end{aligned}$$

Using these relations, the formulae (4.8)–(4.10) can be obtained by induction. Finally, (4.11) can be established from the equation \({\varvec{\xi }}_{\eta }e_{\omega _{\eta }}=1\). This completes the proof.

(3) The proof of Lemma 2. The argument is similar to that given in [11] and [12]. We present it here for the paper self-contained. Denote the classical adjoin matrix of the kernel matrix \(\varDelta _{\eta }(z)\) by \(adj\varDelta _{\eta }(z)\), then \(\{adj \varDelta _{\eta }(z)\}\times \varDelta _{\eta }(z)=det\varDelta _{\eta }(z)I_{\omega _{\eta }}\). Differentiating the equation with respect to z, evaluating the result at \(z=1\) and multiplying on the right by \(e_{\omega _{\eta }}\) yield \(\{adj \varDelta _{\eta }(1)\}\varDelta _{\eta }'(1)e_{\omega _{\eta }}+\frac{d}{dz}\{adj\varDelta _{\eta }(z)\}|_{z=1}\varDelta _{\eta }(1)e_{\omega _{\eta }}=\gamma e_{\omega _{\eta }}.\) From \(\varDelta _{\eta }(1)e_{\omega _{\eta }}=0\), we obtain \(\{adj\varDelta _{\eta }(1)\}\)\([N_{\eta }I_{\omega _{\eta }}-K_{\eta }'(1)]e_{\omega _{\eta }}=\gamma _{\eta } e_{\omega _{\eta }}.\) Since \(\{adj\varDelta _{\eta }(1)\}\varDelta _{\eta }(1)=\mathbf{0}\), we further have \(adj\varDelta _{\eta }(1)=c[{\varvec{\xi }}_{\eta },\ldots ,{\varvec{\xi }}_{\eta }]^{\tau }\) where \(c>0\). Consequently, \(c[{\varvec{\xi }}_{\eta },\ldots ,{\varvec{\xi }}_{\eta }]^{\tau }[N_{\eta }I_{\omega _{\eta }}-K_{\eta }'(1)]e_{\omega _{\eta }}=\gamma _{\eta } e_{\omega _{\eta }}\), so that the claim (i) holds. To prove the claim (ii), note that under the assumption 1, \(\gamma _{\eta }>0\) holds. According to Theorem 6 in [12], the Markov chain is ergodic. The proof is completed.

Appendix 4

We prove Theorem 1 in two steps: (1) the calculation of the determinant \(det\varDelta _{\eta }(z)\) and (2) the discussion on the distribution situation of zeros of \(det\varDelta _{\eta }(z)\). Concretely, in the step 1, based on the structure characteristic of the matrix \(\varDelta _{\eta }(z)\), we calculate its determinant using the following formula of block matrix determinant iteratively

$$\begin{aligned} det \left( \begin{array}{ccc} A &{} B \\ C &{} D \end{array} \right) =det(A)det(D-CA^{-1}B) \end{aligned}$$

and in step 2, we discuss the zeros of \(det\varDelta _{\eta }(z)\) using Rouché’s theorem.

Step 1. The derivation of (i) of Theorem 1. Note that the first rows of all the sub-matrixes \(K_{i0}(z),\ i=1,\ldots ,m_{\eta }\) are same and non-zero. Then, for the determinant \(det\varDelta _{\eta }(z)\), multiplying the first row of \(-K_{m_{\eta }0}(z)\) by -1 and adding it to the first row of \(-K_{i0}(z),\ i=1,\ldots ,m_{\eta }-1\) yield

$$\begin{aligned}&det\varDelta _{\eta }(z)\\&\quad =\left| \begin{array}{ccccccccc} z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z) &{} -K_{01}(z) &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z) &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z) \\ -K_{m_{\eta }0}(z) &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \end{array} \right. \\&\quad \left. \begin{array}{ccccccccc} &{} \mathbf{0} \\ &{} -K^{(0)}_{1m_{\eta }}(z) \\ &{} -K^{(0)}_{2m_{\eta }}(z) \\ &{} \vdots \\ &{} -K^{(0)}_{m_{\eta }-1m_{\eta }}(z) \\ &{} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z) \end{array} \right| \end{aligned}$$

where

$$\begin{aligned}&-K^{(0)}_{im_{\eta }}(z)\\&=\left[ \begin{array}{cccccccc} z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,m}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z) &{} \cdots &{} -\frac{g_{\eta }}{\omega _{\eta ,m}}z^{N_{\eta }}d_{\eta }^{co}(z) \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,i}\times \omega _{\eta ,m},} \end{aligned}$$

and

$$\begin{aligned} -K^{(0)}_{m_{\eta }-1m_{\eta }}(z)=\left[ \begin{array}{cccccccc} z^{N_{\eta }} &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] _{\omega _{\eta ,m_{\eta }-1}\times \omega _{\eta ,m_{\eta }}}. \end{aligned}$$

For \(i=1,\ldots ,m_{\eta }-2\), let

$$\begin{aligned} \varDelta _i^{\eta }(z)&= {} \left[ \begin{array}{ccccccccc} z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z) &{} -K_{ii+1}(z) &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} z^{N_{\eta }}I_{\omega _{\eta ,(i+1)}}-K_{i+1i+1}(z) &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z) \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \end{array} \right. \\&\quad \left. \begin{array}{ccccccccc} &{} -K^{(0)}_{im_{\eta }}(z) \\ &{} -K^{(0)}_{i+1m_{\eta }}(z) \\ &{} \vdots \\ &{} -K^{(0)}_{m_{\eta }-1m_{\eta }}(z) \\ &{}z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{l=1}^{i}H_{m_{\eta }m_{\eta }}^{(l)}(z) \end{array} \right] . \end{aligned}$$

We have

$$\begin{aligned} det\varDelta _{\eta }(z)&= {} \left| \begin{array}{c|cccccccc} z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z) &{} -K_{01}(z) &{} \mathbf{0} &{} \cdots &{} &{} \mathbf{0} \\ \mathbf{0} &{} &{} &{} &{} \\ \vdots &{} &{} \varDelta _1^{\eta }(z) &{} &{} \\ \mathbf{0} &{} &{} &{} &{} \\ -K_{m_{\eta }0}(z) &{} &{} &{} &{} \end{array} \right| \\&=det(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z))det (\varDelta _1^{\eta }(z)- \left[ \begin{array}{ccccccc} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -K_{m_{\eta }0}(z) \end{array} \right] [z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)]^{-1} \times \\&\quad {[}\ -K_{01}(z)\ \ \mathbf{0}\ \ \cdots \ \ \mathbf{0}\ \ \mathbf{0}\ ] ) \\&\quad \equiv det(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)) detD(z) \end{aligned}$$

We first calculate \(det(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z))\) in the last equality by induction. Based on the structure of the matrix \(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)\), we have

$$\begin{aligned}&det(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z))\\&\quad =\left| \begin{array}{cccccc} z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} \cdots &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) \\ -z^{N_{\eta }}d^*_{\eta }(z) &{} z^{N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| _{\omega _{\eta ,0}\times \omega _{\eta ,0}}\\&\quad =(z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z))\left| \begin{array}{ccccc} z^{N_{\eta }} &{} &{} &{} \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} &{} \\ &{} \ddots &{} \ddots &{} \\ &{} &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| _{(\omega _{\eta ,0}-1)\times (\omega _{\eta ,0}-1)}\\&\quad -(-z^{N_{\eta }}d_{\eta }^*(z)) \left| \begin{array}{cccccc} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} \cdots &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{}\vdots \\ 0 &{} 0 &{} \cdots &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| \\&\quad =(z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z))z^{N_{\eta }(\omega _{\eta ,0}-1)}+\\&\quad z^{N_{\eta }}d_{\eta }^*(z)\left\{ -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)\left| \begin{array}{ccccc} z^{N_{\eta }} &{} &{} &{} \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} &{} \\ &{} \ddots &{} \ddots &{} \\ &{} &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| \right. \\&\quad \left. -(-z^{N_{\eta }}d_{\eta }^*(z)) \left| \begin{array}{cccccc} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} \cdots &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{}\vdots \\ 0 &{} 0 &{} \cdots &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| \right\} \\&\displaystyle =(z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z))z^{N_{\eta }(\omega _{\eta ,0}-1)}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)z^{N_{\eta }(\omega _{\eta ,0}-1)}d_{\eta }^*(z)\\&\quad +(z^{N_{\eta }}d_{\eta }^*(z))^2\left| \begin{array}{cccccc} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} \cdots &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{}\vdots \\ 0 &{} 0 &{} \cdots &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| \\&\displaystyle =(z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z))z^{N_{\eta }(\omega _{\eta ,0}-1)}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)z^{N_{\eta }(\omega _{\eta ,0}-1)}d_{\eta }^*(z)-\\&\quad \frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)z^{N_{\eta }(\omega _{\eta ,0}-1)}d_{\eta }^{*2}(z)-\cdots \\&-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)z^{N_{\eta }(\omega _{\eta ,0}-1)}d_{\eta }^{*(\omega _{\eta ,0}-3)}(z)+\\&\quad (z^{N_{\eta }}d_{\eta }^*(z))^{\omega _{\eta ,0}-2} \left| \begin{array}{cccccc} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) &{} -\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z) \\ -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right| \\&\quad \displaystyle =z^{N_{\eta }(\omega _{\eta ,0}-1)}\left( z^{N_{\eta }}-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)\left( 1+d_{\eta }^*(z)+\cdots +d_{\eta }^{*(\omega _{\eta ,0}-2)}(z)d_{\eta }(z)\right) \right) . \end{aligned}$$

Next, we calculate the second term detD(z) by induction. Note that

$$\begin{aligned}&\left[ \begin{array}{ccccccc} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -K_{m_{\eta }0}(z) \end{array} \right] [z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)]^{-1}[\ -K_{01}(z)\ \ \mathbf{0}\ \ \cdots \ \ \mathbf{0}\ ]\\&\quad =\left[ \begin{array}{ccccccc} \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0}\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{}\vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0}\\ H_{m_{\eta }1}^{(1)}(z) &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} H_{m_{\eta }m_{\eta }}^{(1)}(z) \end{array} \right] \end{aligned}$$

with \(H_{m_{\eta }1}^{(1)}(z)=(-K_{m_{\eta }0}(z))[z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)]^{-1}(-K_{01}(z))\) and \(H_{m_{\eta }m_{\eta }}^{(1)}(z)=\mathbf{0}\). This gives

$$\begin{aligned}&detD(z) = \left| \begin{array}{ccccccccc} z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z) &{} -K_{12}(z) &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} z^{N_{\eta }}I_{\omega _{\eta ,2}}-K_{22}(z) &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z)\\ H_{m_{\eta }1}^{(1)}(z) &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \end{array} \right. \\&\quad \left. \begin{array}{cccc} -K^{(0)}_{1m_{\eta }}(z) \\ -K^{(0)}_{2m_{\eta }}(z) \\ \vdots \\ -K^{(0)}_{m_{\eta }-1m_{\eta }}(z) \\ z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z) -H_{m_{\eta }m_{\eta }}^{(1)}(z) \end{array} \right| \\&\quad =det(z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z))det\\&\quad \left( \varDelta _2(z)-\left[ \begin{array}{ccccccc} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -H_{m_{\eta }1}^{(1)}(z) \end{array} \right] [z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z)]^{-1} \times \right. \\&\left. [\ -K_{12}(z)\ \ \mathbf{0}\ \ \cdots \ \ \mathbf{0}\ \ -K_{1m_{\eta }}^{(0)}\ ] \right) \\&\quad =det(z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z))det\\&\quad \left( \varDelta _2(z)-\left[ \begin{array}{ccccccc} \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0}\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} \mathbf{0} \\ H_{m_{\eta }1}^{(2)}(z) &{} \mathbf{0} &{} \cdots &{} \mathbf{0} &{} H_{m_{\eta }m_{\eta }}^{(2)}(z) \end{array} \right] \right) \\&\quad =det(z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z))\times \\&\quad det\left[ \begin{array}{ccccccccc} z^{N_{\eta }}I_{\omega _{\eta ,2}}-K_{22}(z) &{} -K_{23}(z) &{} \cdots &{} \mathbf{0} \\ \mathbf{0} &{} z^{N_{\eta }}I_{\omega _{\eta ,3}}-K_{33}(z) &{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0} &{} \mathbf{0} &{} \cdots &{} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z) \\ -H_{m_{\eta }2}^{(2)}(z) &{} \mathbf{0} &{} \cdots &{} \mathbf{0} \end{array} \right. \\&\quad \left. \begin{array}{ccccc} -K^{(0)}_{2m_{\eta }}(z) \\ -K^{(0)}_{3m_{\eta }}(z) \\ \vdots \\ -K^{(0)}_{m_{\eta }-1m_{\eta }}(z) \\ z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{i=1}^2H_{m_{\eta }m_{\eta }}^{(i)}(z) \end{array} \right] \end{aligned}$$

with \(H_{m_{\eta }2}^{(2)}(z) =(-H_{m_{\eta }1}^{(1)}(z))[z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z)]^{-1}(-K_{12}(z))\) and \(H_{m_{\eta }m_{\eta }}^{(2)}(z) =(-H_{m_{\eta }1}^{(1)}(z))[z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z)]^{-1}\times (-K_{1m_{\eta }}^{(0)}(z))\). The structure of the matrix of the second term in the last equality is the same as that of D(z). Thus, repeating the above procedure yields

$$\begin{aligned}&detD(z) = det(z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z))\cdots \\&\quad det(z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-2}}-K_{m_{\eta }-2m_{\eta }-2}(z))\\&\quad \times det\left[ \begin{array}{ccccc} z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z) &{} -K_{m_{\eta }-1m_{\eta }}^{(0)} \\ -H_{m_{\eta }m_{\eta }-1}^{(m_{\eta }-1)} &{} z^{N_{\eta }}I_{\omega _{\eta ,m}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{i=1}^{m_{\eta }-1}H_{m_{\eta }m_{\eta }}^{(i)}(z) \end{array} \right] \\&\quad =det(z^{N_{\eta }}I_{\omega _{\eta ,1}}-K_{11}(z))det(z^{N_{\eta }}I_{\omega _{\eta ,2}}-K_{22}(z))\cdots \cdots \\&\quad det(z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }-1}(z))\\&\quad \times det\left( (z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }m_{\eta }}(z) -\sum _{l=1}^{m_{\eta }-1}H_{m_{\eta }m_{\eta }}^{(l)}(z))-(-H_{m_{\eta }m_{\eta }-1}^{(m_{\eta }-1)}(z)) \right. \\&\quad \times \left. [z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }1-}(z))]^{-1}(-K_{m_{\eta }-1m_{\eta }}^{(0)}(z))\right) \\&\quad =\prod _{i=1}^{m_{\eta }-1}det(z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z))\\&\quad \times det\left( z^{N_{\eta }}I_{\omega _{\eta ,m}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{i=1}^{m_{\eta }}H_{m_{\eta }m_{\eta }}^{(i)}(z))\right) \end{aligned}$$

where \(H_{m_{\eta }m_{\eta }}^{(m_{\eta })}(z)=(-H_{m_{\eta }m_{\eta }-1}^{(m_{\eta }-1)}(z))[z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }-1}}-K_{m_{\eta }-1m_{\eta }1-}(z))]^{-1}(-K_{m_{\eta }-1m_{\eta }}^{(0)}(z))\). For \(i=1,\ldots ,m_{\eta }-1 \) we have

$$\begin{aligned} z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z)=\left[ \begin{array}{cccccc} z^{N_{\eta }} &{} &{} &{} &{} \\ -z^{N_{\eta }}d^*_{\eta }(z) &{}z^{N_{\eta }} &{} &{} \\ &{} \ddots &{} \ddots &{} \\ &{} &{} -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right] _{\omega _i\times \omega _i,} \end{aligned}$$

so that \(det[z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z)]=z^{N_{\eta }\omega _{\eta ,i}} \) and

$$\begin{aligned}&{[}z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z)]^{-1}=z^{-N_{\eta }}\\&\quad \left[ \begin{array}{cccccc} 1 &{} &{} &{} &{} \\ d^*_{\eta }(z) &{} 1 &{} &{} \\ d^{*2}_{\eta }(z) &{} d^*_{\eta }(z) &{} \ddots &{} &{} \\ \vdots &{} \vdots &{} \ddots &{} \ddots \\ d^{*(\omega _{\eta ,i}-2)}(z)d_{\eta }(z) &{}d^{*(\omega _{\eta ,i}-3)}(z)d_{\eta }(z) &{}\cdots &{} d_{\eta }(z) &{} 1 \end{array} \right] \end{aligned}$$

This gives \(\prod _{i=1}^{m_{\eta }-1}det(z^{N_{\eta }}I_{\omega _{\eta ,i}}-K_{ii}(z))=z^{N_{\eta }(\omega _{\eta ,1}+\cdots +\omega _{\eta ,m_{\eta }-1})}\). The factor \(det(z^{N_{\eta }}I_{\omega _{\eta ,m}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{i=1}^{m_{\eta }}H_{m_{\eta }m_{\eta }}^{(i)}(z))\) can be calculated as follows. Recall that all the elements of the matrixes \(K_{m_{\eta }0}(z), K_{ii+1}(z)\) and \(K_{im_{\eta }}^{(0)}(z)\) are zero except for the first rows. This property is also inherited by all the matrices \(H_{m_{\eta }m_{\eta }}^{(i)}(z),\ i=1,\ldots , m_{\eta }\). Thus, we can write \(H_{m_{\eta }m_{\eta }}(z)\equiv \sum _{i=1}^{m_{\eta }}H_{m_{\eta }m_{\eta }}^{(i)}(z)\) as

$$\begin{aligned} H_{m_{\eta }m_{\eta }}(z)=\left[ \begin{array}{cccccc} H_{m_{\eta }m_{\eta }}(1,1)(z) &{} H_{m_{\eta }m_{\eta }}(1,2)(z) &{} \cdots &{} H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }})(z) \\ 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} 0 \end{array} \right] . \end{aligned}$$

We have

$$\begin{aligned}&z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z)-H_{m_{\eta }m_{\eta }}(z)\\&\quad =\left[ \begin{array}{ccccccc} z^{N_{\eta }}-\frac{z^{N_{\eta }}(1-g_{\eta })d_{\eta }^{co}}{\omega _{\eta ,m_{\eta }}}-H_{m_{\eta }m_{\eta }}(1,1) &{} -\frac{z^{N_{\eta }}(1-g_{\eta })d_{\eta }^{co}}{\omega _{\eta ,m_{\eta }}}-H_{m_{\eta }m_{\eta }}(1,2) &{} \cdots \\ -z^{N_{\eta }}d_{\eta }^*(z) &{} z^{N_{\eta }} &{} \cdots \\ &{} \ddots &{} \ddots \\ &{} &{} \end{array} \right. \\&\quad \left. \begin{array}{ccccc} -\frac{z^{N_{\eta }}(1-g_{\eta })d_{\eta }^{co}}{\omega _{\eta ,m_{\eta }}}-H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }}-1)&{} -\frac{z^{N_{\eta }}(1-g_{\eta })d_{\eta }^{co}}{\omega _{\eta ,m_{\eta }}}-H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }}) \\ 0 &{} 0 \\ \vdots &{} \vdots \\ -z^{N_{\eta }}d_{\eta }(z) &{} z^{N_{\eta }} \end{array} \right] \end{aligned}$$

As seen, this matrix has the same structure as the matrix \(z^{N_{\eta }}I_{\omega _{\eta ,0}}-K_{00}(z)\). By similar argument we obtain the determinant

$$\begin{aligned}&det(z^{N_{\eta }}I_{\omega _{\eta ,m_{\eta }}}-K_{m_{\eta }m_{\eta }}(z)-\sum _{i=1}^{m_{\eta }}H_{m_{\eta }m_{\eta }}^{(i)}(z))\\&\quad =z^{(\omega _{\eta ,m_{\eta }}-1)N_{\eta }}\left( z^{N_{\eta }}-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z)\right. \\&\quad (\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z))- \\&\quad (\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}H_{m_{\eta }m_{\eta }}(1,l)(z)d_{\eta }^{*(l-1)}(z)\\&\quad \left. + H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }})(z)d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}d_{\eta }(z))\right) . \end{aligned}$$

Substituting the above results into detD(z), we finally get the expression

$$\begin{aligned} detD(z)&= {} z^{N_{\eta }(\omega _{\eta }-\omega _{\eta ,0}-1)}\\&\quad \left( z^{N_{\eta }}-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}z^{N_{\eta }}d_{\eta }^{co}(z)(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z))\right. \\&\quad -\left( \sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}H_{m_{\eta }m_{\eta }}(1,l)(z)d_{\eta }^{*(l-1)}(z)\right. \\&\quad \left. \left. + H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }})(z)d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}d_{\eta }(z)\right) \right) . \end{aligned}$$

where \(\omega _{\eta }=\omega _{\eta ,0}+\omega _{\eta ,1}+\cdots +\omega _{\eta ,m_{\eta }}\). This completed the proof of (i).

Step 2. The proof of (ii) and (iii) of Theorem 1. For the claim (ii), define \(f_1(z)=z^{N_{\eta }}\) and \(f_2(z)=-\frac{g_{\eta }}{\omega _{\eta ,0}}d_{\eta }^{(N_{\eta })}(z)(1+d_{\eta }^*(z)+d_{\eta }^{*2}(z)+\cdots +d_{\eta }^{*(\omega _{\eta ,0}-2)}(z)d_{\eta }(z))\), then both \(f_1(z)\) and \(f_2(z)\) are analytic in \(|z|<1\) and continuous on \(|z|\le 1\). For z with \(|z|=1\),

$$\begin{aligned} |f_2(z)|&= {} \frac{g_{\eta }}{\omega _{\eta ,0}}|d_{\eta }^{(N_{\eta })}(z)||1+d_{\eta }^*(z)+d_{\eta }^{*2}(z)+\cdots \\&\quad +d_{\eta }^{*(\omega _{\eta ,0}-2)}(z)d_{\eta }(z)| \\&\le \frac{g_{\eta }}{\omega _{\eta ,0}}|d_{\eta }^{(N_{\eta })}(z)|(1+|d_{\eta }^*(z)|+|d_{\eta }^{*}(z)|^2+\cdots \\&\quad +|d_{\eta }^{*}(z)|^{\omega _{\eta ,0}-2}|d_{\eta }(z)|)\\&\le g_{\eta }<1=|z|^{N_{\eta }}=|f_1(z)|. \end{aligned}$$

An application of Rouché’s theorem shows that \(a_{\eta }(z)=f_1(z)+f_2(z)\) and \(f_1(z)\) have the same number of zeroes in the open unit disk. Next, we prove the claim (iii). Let

$$\begin{aligned} f_1(z)&= {} z^{N_{\eta }}\left( 1-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}d_{\eta }^{co}(z)\right. \\&\quad \left. \left( \sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z)\right) \right) , \\ f_2(z)&= {} \sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}H_{m_{\eta }m_{\eta }}(1,l)(z)d_{\eta }^{*(l-1)}(z)\\&\quad + H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }})(z)d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z), \end{aligned}$$

and let \(b_t(z)=f_1(z)+tf_2(z)\) for \(0\le t <1\). Then \(f_1(z)\) and \(f_2(z)\), thus \(b_t(z)\) are analytic in \(|z|<1\) and continuous on \(|z|\le 1\). Furthermore, \(b_t(z)\) is also a continuous function of t. First we determine the number and location of zeroes of \(b_t(z)\) for \(0\le t<1\). Since for any z in \(|z|\le 1\),

$$\begin{aligned}&\left| 1-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}d_{\eta }^{co}(z)(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z))\right| \\&\ge 1-\left| \frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}d_{\eta }^{co}(z)(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z))\right| \\&\ge 1-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}d_{\eta }^{co}(1)(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(1)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(1)d_{\eta }(1))=g_{\eta }>0, \end{aligned}$$

the factor \(1-\frac{1-g_{\eta }}{\omega _{\eta ,m_{\eta }}}d_{\eta }^{co}(z)(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}d_{\eta }^{*(l-1)}(z)+d_{\eta }^{*(\omega _{\eta ,m_{\eta }}-1)}(z)d_{\eta }(z))\) has no zeroes in \(|z|\le 1\). Hence \(f_1(z)\) has exactly \(N_{\eta }\) zeroes in the open unit disk and \(|f_1(z)|\ge g_{\eta }\) for z with \(|z|=1\). According to Lemma 1, \(z_{2N_{\eta }}=1\) is a zero point of \(det\varDelta _{\eta }(z)\), we have \(det\varDelta _{\eta }(1)=a_{\eta }(1)b_{\eta }(1)=0\). Due to \(a_{\eta }(1)=g_{\eta }\ne 0\), it must hold that \(b_{\eta }(1)=0\), which gives \(f_2(1)=-f_1(1)=-g_{\eta }\). Thus for \(|z|=1\) and \(0\le t <1\), we have \(|tf_2(z)|\le t(\sum _{l=1}^{\omega _{\eta ,m_{\eta }}-1}|H_{m_{\eta }m_{\eta }}(1,l)(z)||d_{\eta }^{*}(z)|^{l-1}+ |H_{m_{\eta }m_{\eta }}(1,\omega _{\eta ,m_{\eta }})(z)||d_{\eta }^{*}(z)|^{\omega _{\eta ,m_{\eta }}-1}|d_{\eta }(z)|\ ) \le tf_2(1)=tg_{\eta }<|f_1(z)|.\) Again according to Rouché’s theorem, we can see that \(b_t(z)=f_1(z)+tf_2(z)\) has exactly \(N_{\eta }\) zeroes (counting multiplicities) in the open unit disk and no zeroes on \(|z|=1\). Next, we consider \(b_{\eta }(z)\) and prove that under Assumption 1, there exists a unique zero \(z_{2N_{\eta }}(t)\) of \(b_t(z)\) such that \(\lim _{t\rightarrow 1}z_{2N_{\eta }}(t)=1=z_{2N_{\eta }}\). From \(\gamma _{\eta }=\frac{d}{dz}det\varDelta _{\eta }(z)|_{z=1}=a_{\eta }(1)b_{\eta }'(1)\), we have \(b_{\eta }'(1)=\gamma _{\eta }/g_{\eta }>0\). For z near 1, the first Taylor series expansion of \(b_t(z)\) gives

$$\begin{aligned} b_t(z)=b_t(1)+\gamma _t(z-1)+\epsilon _t(z)=g\gamma _t(1-t)+\gamma _t(z-1)+\epsilon _t(z) \end{aligned}$$

where \(\gamma _t=b'_t(1) \rightarrow b'(1)\) as \(t\rightarrow 1\), and \(\epsilon _t(z)/(z-1)\rightarrow 0\) as \(z\rightarrow 1\) uniformly in \(0\le t<1\). Define \(l_t(z)=g_{\eta }(1-t)+\gamma _t(z-1)\), and note that \(l_t(z)\) has one zero \(z_t=1-\frac{g_{\eta }(1-t)}{\gamma _t}\) which is near but less than 1 when t is near 1. Let \(\varOmega (\delta )=\{z:\ |z|<1, |z-1|<\delta \}\). We claim that \(|\epsilon _t(z)|=|b_t(z)-l_t(z)|<|l_t(z)|\) when \(z\in \partial \varOmega (\delta )\) for \(\delta \) sufficiently small and t near 1. Choose \(\delta \le \frac{1}{2}\) and \(t_{\delta }<1\) such that, for \(t_{\delta }<t<1\), \(\epsilon _t(z)/(z-1)|<\gamma /8g_{\eta }\) for \(|z-1|\le \delta ,\ \gamma _t>\gamma /2g_{\eta }\) and \(b_t(1)=g_{\eta }(1-t)< \delta /4g_{\eta }\). On the part of the boundary of \(\varOmega (\delta )\) where \(|z-1|=\delta \), it holds that for \(t_{\delta }<t<1\),

$$\begin{aligned} |l_t(z)|\ge \gamma _t|z-1|-g_{\eta }(1-t)>\frac{\gamma _{\eta }}{4g_{\eta }}|1-z|>|\epsilon _t(z)|. \end{aligned}$$

On the part of \(\partial \varOmega (\delta )\) where \(|z|=1\), since \(|z-1|^2\le 2|y|^2\) we have \(|l_t(z)|=\)

$$\begin{aligned}&|g_{\eta }(1-t)+\gamma _t(z-1)|=|g_{\eta }(1-t)+i\gamma _ty+\gamma _t(x-1)|\ge |g_{\eta }(1-t)+i\gamma _ty|-\gamma _t(1-x)\\&\ge \frac{g_{\eta }(1-t)}{\sqrt{2}}+\frac{\gamma _t|y|}{\sqrt{2}}-\frac{\gamma _t|z-1|^2}{2}\ge \gamma _t\frac{|z-1|}{2}(1-\delta )\ge \frac{\gamma }{4g_{\eta }}|z-1|>|\epsilon _t(z)|. \end{aligned}$$

Again from Rouché’s theorem, we get that \(b_t(z)\) and \(l_t(z)\) have the same number of zeroes in \(\varOmega (\delta )\), that is, just one zero (denoted by \(z_{2N_{\eta }}(t)\)). Obviously, \(\lim _{t\rightarrow 1}z_{2N_{\eta }}(t)=1\). The proof is completed.

Appendix 5

The derivation of Theorem 2. The idea is that firstly, obtain the power series expansion of \({\varvec{\pi }}_{\eta }(z)e_{\omega _{\eta }}\) at \(z=1\) by using the eigenvalues and eigenvectors of \(K_{\eta }(z)\), and then derive the Eq. (4.14) by substituting \(z=1\) into this power series expansion. Denote the eigenvalues of \(K=K_{\eta }(1)\) by \(x_n\), \(n=1,\ldots ,\omega _{\eta }\), especially, \(x_1=1\). Let \(x_n(z)\) be the analytic eigenvalue function of K(z), and \(\mathbf{u}_n(z)\) and \(\mathbf{v}_n(z)\) the corresponding analytic left and right eigenvectors in a neighborhood of \(z=1\), respectively. The power series expansion of those functions and vectors at \(z=1\) are given as follows.

$$\begin{aligned} x_n(z)&= {} x_n+(z-1)x_n^{(1)}+\frac{1}{2}(z-1)^2x_n^{(2)}+o((z-1)^2), \\ \mathbf{u}_n(z)&= {} \mathbf{u}_n+(z-1)\mathbf{u}_n^{(1)}+\frac{1}{2}(z-1)^2\mathbf{u}_n^{(2)}+o((z-1)^2), \\ \mathbf{v}_n(z)&= {} \mathbf{v}_n+(z-1)\mathbf{v}_n^{(1)}+\frac{1}{2}(z-1)^2\mathbf{v}_n^{(2)}+o((z-1)^2). \end{aligned}$$

From (4.7) we have

$$\begin{aligned}&{\varvec{\pi }}_{\eta }(z)e_{\omega _{\eta }}\nonumber \\&\quad =\left( {\varvec{\pi }}_0^{\eta }(A_{\eta }(z)-I_{\omega _{\eta }})+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }(z)-zI_{\omega _{\eta }})z^l\right) (z^{N_{\eta }}I_{\omega _{\eta }}-K_{\eta }(z))^{-1}e_{\omega _{\eta }}. \end{aligned}$$
(A.1)

Directly extending the first term of the right hand at \(z=1\) yields

$$\begin{aligned}&{\varvec{\pi }}_0^{\eta }(A_{\eta }(z)-I_{\omega _{\eta }})+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }(z)-zI_{\omega _{\eta }})z^l\nonumber \\&\quad ={\varvec{\pi }}_0^{\eta }(A_{\eta }-I_{\omega _{\eta }})+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }-I_{\omega _{\eta }})+(z-1)\nonumber \\&\quad \left[ {\varvec{\pi }}_0^{\eta }A_{\eta }'+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }'-I_{\omega _{\eta }})+\right. \nonumber \\&\quad \left. \sum _{l=1}^{N_{\eta }-1}l{\varvec{\pi }}_l^{\eta }(B_{\eta }-I_{\omega _{\eta }})\right] \nonumber \\&\quad +\frac{1}{2}(z-1)^2\left[ {\varvec{\pi }}_0^{\eta }A_{\eta }''+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }B_{\eta }''+2\sum _{l=1}^{N_{\eta }-1}l{\varvec{\pi }}_l^{\eta }(B_{\eta }'-I_{\omega _{\eta }})+\right. \nonumber \\&\quad \left. \sum _{l=2}^{N_{\eta }-1}l(l-1){\varvec{\pi }}_l^{\eta }(B_{\eta }-I_{\omega _{\eta }})\right] +o((z-1)^2). \end{aligned}$$
(A.2)

Next we consider the expansion of \((z^{N_{\eta }}I_{\omega _{\eta }}-K_{\eta }(z))^{-1}\). From the definitions of \(\mathbf{u}_n\) and \(\mathbf{v}_n\) we see that

$$\begin{aligned} (z^{N_{\eta }}I_{\omega _{\eta }}-K_{\eta }(z))^{-1} =\mathbf{V}(z)(z^{N_{\eta }}I_{\omega _{\eta }}-\varTheta (\mathbf{x}(z)))^{-1}\mathbf{U}(z) \end{aligned}$$
(A.3)

with \(\mathbf{U}(z)=(\mathbf{u}_1(z),\ldots ,\mathbf{u}_{\omega _{\eta }}(z))\), \(\mathbf{V}(z)=(\mathbf{v}_1^{\tau }(z),\ldots ,\mathbf{v}^{\tau }_{\omega _{\eta }}(z))^{\tau }\), \(\mathbf{x}(z)=(x_1(z), \ldots ,x_{\omega _{\eta }}(z))\) and \(\varTheta (\mathbf{x}(z))\) denotes the diagonal matrix whose the nth diagonal element is \(x_n(z)\). Let \(\mathbf{y}(z)=(\frac{1}{z^{N_{\eta }}-x_1(z)}, \ldots , \frac{1}{z^{N_{\eta }}-x_{\omega _{\eta }}(z)})\equiv (y_1(z),\ldots , y_{\omega _{\eta }}(z))\). Note that \(z=1\) is the pole of \(y_1(z)\), so the expansion of \(y_n(z)\) is given by

$$\begin{aligned} y_n(z)=\left\{ \begin{array}{lllll} \frac{1}{(z-1)(N_{\eta }-x_1^{(1)})}-\frac{N_{\eta }(N_{\eta }-1)-x_1^{(2)}}{2(N-x_1^{(1)})^2}+o(1), n=1,\\ \frac{1}{1-x_n}+o(1), n\ge 2. \end{array} \right. \end{aligned}$$
(A.4)

Moreover,

$$\begin{aligned} \begin{array}{lll} \mathbf{V}(z)=V+(z-1)V^{(1)}+\frac{1}{2}(z-1)^2V^{(2)}+o((z-1)^2), \\ \mathbf{U}(z)e_{\omega _{\eta }}=\mathbf{1}_1+(z-1){\varvec{\beta }}+o(z-1) \end{array} \end{aligned}$$
(A.5)

where \(\mathbf{1}_1=(1,0,\ldots ,0)^{\tau }\) and \({\varvec{\beta }}=(\beta _1,\ldots ,\beta _{\omega _{\eta }})\) with \(\beta _1=0\) and \(\beta _n=\mathbf{u}_n^{(1)}e_{\omega _{\eta }}=\mathbf{u}_nK_{\eta }'e_{\omega _{\eta }}/(1-x_n)\) for \(n\ge 2\). Substituting the expressions (A.2)-(A.5) into (A.1) and using the fact that

$$\begin{aligned} \begin{array}{llll} \mathbf{V}(z)\mathbf{1}_1=\mathbf{1}_1+(z-1)\mathbf{v}_1^{(1)}+\frac{1}{2}(z-1)^2\mathbf{v}_1^{(2)}+o((z-1)^2), \\ \mathbf{V}(z){\varvec{\beta }}=\sum _{n=2}^{\omega }v_n\beta _n+o(1), \end{array} \end{aligned}$$

we obtain the power series expansion of \({\varvec{\pi }}_{\eta }(z)e_{\omega _{\eta }}\) at \(z=1\).

$$\begin{aligned}&{\varvec{\pi }}_{\eta }(z)e_{\omega _{\eta }}\\&\quad =\frac{1}{N_{\eta }-x_1^{(1)}}\left\{ {\varvec{\pi }}_0^{\eta }\left[ (A_{\eta }-I_{\omega _{\eta }})\mathbf{v}_1^{(1)}+A_{\eta }'e_{\omega _{\eta }}\right] +\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }\right. \\&\quad \left. \left[ (B_{\eta }-I_{\omega _{\eta }})\mathbf{v}_1^{(1)}+(B_{\eta }'-I_{\omega _{\eta }})e_{\omega _{\eta }}\right] \right\} \\&\quad +\frac{z-1}{N_{\eta }-x_1^{(1)}}\left\{ \left[ {\varvec{\pi }}_0^{\eta }(A_{\eta }-I_{\omega _{\eta }})+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }-I)\right] \left[ \mathbf{v}_1^{(2)}-\frac{1}{2}\frac{N_{\eta }(N_{\eta }-1)-x_1^{(2)}}{N_{\eta }-x_1^{(1)}}\mathbf{v}_1^{(1)}- \right. \right. \\&\quad \left. \left. \sum _{n=2}^{\omega _{\eta }}\frac{(N_{\eta }-x_1^{(1)})\mathbf{u}_nK_{\eta }'e_{\omega _{\eta }}}{(1-x_n)^2}{} \mathbf{v}_n\right] \right. -\frac{N_{\eta }(N_{\eta }-1)-x_1^{(2)}}{2(N_{\eta }-x_1^{(1)})}\left[ {\varvec{\pi }}_0^{\eta }A_{\eta }'+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }'-I_{\omega _{\eta }})\right] e_{\omega _{\eta }}\\&\quad +\left[ {\varvec{\pi }}_0^{\eta }A_{\eta }'+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_l^{\eta }(B_{\eta }'-I_{\omega _{\eta }})+\sum _{l=1}^{N_{\eta }-1}l{\varvec{\pi }}_l^{\eta }(B_{\eta }-I_{\omega _{\eta }})\right] \mathbf{v}_1^{(1)}\\&\quad \left. +\frac{1}{2}\left[ {\varvec{\pi }}_0^{\eta }A_{\eta }''+\sum _{l=1}^{N_{\eta }-1}{\varvec{\pi }}_lB_{\eta }''+2\sum _{l=1}^{N_{\eta }-1}l{\varvec{\pi }}_l^{\eta }(B_{\eta }'-I_{\omega _{\eta }})+\sum _{l=2}^{N_{\eta }-1}l(l-1){\varvec{\pi }}_l^{\eta }(B_{\eta }-I_{\omega _{\eta }})\right] \mathbf{v}_1\right\} +o((z-1)) \end{aligned}$$

where \(x_1=1,\ x_1^{(1)}={\varvec{\xi }}K_{\eta }'e_{\omega _{\eta }}\), \(\mathbf{v}_1=e_{\omega _{\eta }}\) and \(\mathbf{u}_1={\varvec{\xi }}\). Finally, substituting \(z=1\) into the above expansion and noting that \({\varvec{\pi }}_{\eta }(1)e_{\omega _{\eta }}=1\), we establish the Eq. (4.16). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W. Performance analysis of IEEE802.11e EDCA wireless networks under finite load. Wireless Netw 26, 4431–4457 (2020). https://doi.org/10.1007/s11276-020-02324-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02324-0

Keywords

Navigation