Skip to main content
Log in

State-of-the-art approach to clustering protocols in VANET: a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular ad hoc network (VANET) assists in improving road safety, traveller comfort, and intelligent transportation systems to a great extent. Dedicated short-range communications technology is specially designed for VANET to form communication among vehicles and vehicles to infrastructure. The lack of router devices in the flat vehicle-to-vehicle network structure of VANET may raise complicated issues like scalability, resource scarcity, reliability, and hidden terminal problem inside the network. The concept of vehicle clustering is introduced in VANET to improve network performance by handling all such issues. This paper provides an in-depth classification of clustering protocols in VANET based on their design objectives. Two broad categories, generalized and application dependent, are considered to review on clustering protocols in VANET. In generalized clustering protocol, cluster design aims to achieve their primary objective, i.e., the formation of a robust cluster having a long sustainable life, While in application dependent clustering protocols, cluster design aims to improve the performance of specific applications (i.e., target tracking, traffic estimation, misbehaviour detection, privacy preservation, certificate revocation, etc.) on various performance metrics. After this, the paper explores essential research contributions of each category comprehensively. Detailed analysis of existing research contributions is also provided after comparing them on many important metrics. Finally, the merits and demerits of existing protocols are also listed. Our attempt to encourage researchers of the concerned field by providing an extensive analysis of clustering in VANET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rolison, J. J., Regev, S., Moutari, S., & Feeney, A. (2018). What are the factors that contribute to road accidents an assessment of law enforcement views, ordinary drivers opinions, and road accident records. Accident Analysis & Prevention, 115, 11–24.

    Google Scholar 

  2. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.

    Google Scholar 

  3. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182.

    Google Scholar 

  4. Morgan, Y. L. (2010). Notes on DSRC & wave standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.

    Google Scholar 

  5. Chlamtac, I., Conti, M., & Liu, J. J.-N. (2003). Mobile ad hoc networking: Imperatives and challenges. Ad Hoc Networks, 1(1), 13–64.

    Google Scholar 

  6. Conti, M., & Giordano, S. (2014). Mobile ad hoc networking: Milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96.

    Google Scholar 

  7. Qureshi, K. N., & Abdullah, A. H. (2013). A survey on intelligent transportation systems. Middle-East Journal of Scientific Research, 15(5), 629–642.

    Google Scholar 

  8. Da Cunha, F. D., Boukerche, A., Villas, L., Viana, A. C., & Loureiro, A. A. (2016). Data communication in VANETs: Survey, applications and challenges. Ad Hoc Networks, 44(C), 90–103. https://doi.org/10.1016/j.adhoc.2016.02.017.

    Article  Google Scholar 

  9. Ghebleh, R. (2018). A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: A survey. Computer Networks, 131, 15–37.

    Google Scholar 

  10. Galaviz-Mosqueda, A., Morales-Sandoval, M., Villarreal-Reyes, S., Galeana-Zapién, H., Rivera-Rodriguez, R., & Alonso-Arevalo, M. A. (2017). Multi-hop broadcast message dissemination in vehicular ad hoc networks: A security perspective review. International Journal of Distributed Sensor Networks, 13(11), 1550147717741263.

    Google Scholar 

  11. Bai, S., Huang, Z., Kwak, D., Lee, S., Oh, H., & Jung, J. (2009). Vehicular multi-hop broadcasting protocol for safety message dissemination in VANETs. In 2009 IEEE 70th vehicular technology conference fall (pp. 1–5). IEEE.

  12. Aparecido, L. (2015). Data dissemination in vehicular networks: challenges, solutions, and future perspectives. In 2015 7th international conference on new technologies, mobility and security (NTMS) (pp. 1–5). IEEE.

  13. Jin, D., Shi, F., & Song, J. (2015). Cluster based emergency message dissemination scheme for vehicular ad hoc networks. In Proceedings of the 9th international conference on ubiquitous information management and communication (p. 2). ACM.

  14. Sucasas, V., Radwan, A., Marques, H., Rodriguez, J., Vahid, S., & Tafazolli, R. (2016). A survey on clustering techniques for cooperative wireless networks. Ad Hoc Networks, 47, 53–81.

    Google Scholar 

  15. Ephremides, A., Wieselthier, J. E., & Baker, D. J. (1987). A design concept for reliable mobile radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1), 56–73.

    Google Scholar 

  16. Li, J., & Chigan, C. (2011). Achieving robust message dissemination in VANET: Challenges and solution. In IEEE intelligent vehicles symposium (IV) (pp. 845–850). Citeseer.

  17. Kuklinski, S., & Wolny, G. (2009). Density based clustering algorithm for VANETs. In 2009 5th international conference on testbeds and research infrastructures for the development of networks & communities and workshops (pp. 1–6). IEEE.

  18. Bali, R. S., Kumar, N., & Rodrigues, J. J. (2014). An intelligent clustering algorithm for VANETs. In 2014 international conference on connected vehicles and expo (ICCVE) (pp. 974–979). IEEE.

  19. Venkata, M. D., Pai, M. M., Pai, R. M., & Mouzna, J. (2011). Traffic monitoring and routing in VANETs—A cluster based approach. In 2011 11th international conference on ITS telecommunications (pp. 27–32). IEEE.

  20. Khakpour, S., Pazzi, R. W., & El-Khatib, K. (2017). Using clustering for target tracking in vehicular ad hoc networks. Vehicular Communications, 9, 83–96.

    Google Scholar 

  21. Arkian, H. R., Atani, R. E., Pourkhalili, A., & Kamali, S. (2014). Cluster-based traffic information generalization in vehicular ad-hoc networks. Vehicular Communications, 1(4), 197–207.

    Google Scholar 

  22. Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8), e3533.

    Google Scholar 

  23. Cooper, C., Franklin, D., Ros, M., Safaei, F., & Abolhasan, M. (2017). A comparative survey of VANET clustering techniques. IEEE Communications Surveys & Tutorials, 19(1), 657–681.

    Google Scholar 

  24. Khan, Z., Fan, P., Fang, S., & Abbas, F. (2019). An unsupervised cluster-based VANET-oriented evolving graph (CVoEG) model and associated reliable routing scheme. IEEE Transactions on Intelligent Transportation Systems., 20, 3844–3859.

    Google Scholar 

  25. Mottahedi, M., Jabbehdari, S., & Adabi, S. (2013). IBCAV: Intelligent based clustering algorithm in VANET. International Journal of Computer Science Issues (IJCSI), 10(1), 538.

    Google Scholar 

  26. Abbas, F., & Fan, P. (2018). Clustering-based reliable low-latency routing scheme using ACO method for vehicular networks. Vehicular Communications, 12, 66–74.

    Google Scholar 

  27. Pal, R., Gupta, N., Prakash, A., & Tripathi, R. (2018). Adaptive mobility and range based clustering dependent MAC protocol for vehicular ad hoc networks. Wireless Personal Communications, 98(1), 1155–1170.

    Google Scholar 

  28. Shah, A. F. M. S., Ilhan, H., & Tureli, U. (2018). CB-MAC: A novel cluster-based MAC protocol for VANETs. IET Intelligent Transport Systems, 13(4), 587–595.

    Google Scholar 

  29. Haq, A. U., Liu, K., & Latif, M. B. (2019). A location-and mobility-aware clustering-based TDMA MAC protocol for vehicular ad-hoc networks. In 2019 28th wireless and optical communications conference (WOCC) (pp. 1–5). IEEE.

  30. Almalag, M. S., Olariu, S., & Weigle, M. C. (2012). TDMA cluster-based MAC for VANETs (TC-MAC). In 2012 IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–6). IEEE.

  31. Azizian, M., Cherkaoui, S., & Hafid, A. S. (2016). A distributed cluster based transmission scheduling in VANET. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  32. Dutta, N., & Chellappan, S. (2013). A time-series clustering approach for Sybil attack detection in vehicular ad hoc networks. In International conference on advances in vehicle systems, technology and applications (pp. 21–26).

  33. Daeinabi, A., & Rahbar, A. G. (2013). Detection of malicious vehicles (DMV) through monitoring in vehicular ad-hoc networks. Multimedia Tools and Applications, 66(2), 325–338.

    Google Scholar 

  34. Sugumar, R., Rengarajan, A., & Jayakumar, C. (2018). Trust based authentication technique for cluster based vehicular ad hoc networks (VANET). Wireless Networks, 24(2), 373–382.

    Google Scholar 

  35. Wahab, O. A., Mourad, A., Otrok, H., & Bentahar, J. (2016). CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc networks. Expert Systems with Applications, 50, 40–54.

    Google Scholar 

  36. Wang, J., Wang, Y., Gu, X., Chen, L., & Wan, J. (2018). ClusterRep: A cluster-based reputation framework for balancing privacy and trust in vehicular participatory sensing. International Journal of Distributed Sensor Networks, 14(9), 1550147718803299.

    Google Scholar 

  37. Vodopivec, S., Bešter, J., & Kos, A. (2012). A survey on clustering algorithms for vehicular ad-hoc networks. In 2012 35th international conference on telecommunications and signal processing (TSP) (pp. 52–56). IEEE.

  38. Bali, R. S., Kumar, N., & Rodrigues, J. J. (2014). Clustering in vehicular ad hoc networks: Taxonomy, challenges and solutions. Vehicular Communications, 1(3), 134–152.

    Google Scholar 

  39. Alsuhli, G. H., Khattab, A., & Fahmy, Y. A. (2019). Double-head clustering for resilient VANETs. Wireless Communications and Mobile Computing,. https://doi.org/10.1155/2019/2917238.

    Article  Google Scholar 

  40. Latif, S., Mahfooz, S., Jan, B., Ahmad, N., Cao, Y., & Asif, M. (2018). A comparative study of scenario-driven multi-hop broadcast protocols for VANETs. Vehicular Communications, 12, 88–109.

    Google Scholar 

  41. Hadded, M., Muhlethaler, P., Laouiti, A., & Saidane, L. A. (2017). TDMA-aware routing protocol for multi-hop communications in vehicular ad hoc networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  42. Kumar, R., & Dave, M. (2011). A comparative study of various routing protocols in VANET. arXiv preprint arXiv:1108.2094.

  43. Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1(1), 33–52.

    Google Scholar 

  44. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.

    Google Scholar 

  45. Gupta, N. K., Yadav, R. S., & Nagaria, R. K. (2019). 3D geographical routing protocols in wireless ad hoc and sensor networks: An overview. Wireless Networks, 26, 2549–2566.

    Google Scholar 

  46. Paul, B., & Islam, M. J. (2012). Survey over VANET routing protocols for vehicle to vehicle communication. IOSR Journal of Computer Engineering (IOSRJCE), 7(5), 1–9.

    Google Scholar 

  47. Gupta, N., Prakash, A., & Tripathi, R. (2015). Medium access control protocols for safety applications in vehicular ad-hoc network: A classification and comprehensive survey. Vehicular Communications, 2(4), 223–237.

    Google Scholar 

  48. Khan, U. A., & Lee, S. S. (2019). Multi-layer problems and solutions in VANETs: A review. Electronics, 8(2), 204.

    Google Scholar 

  49. Hasrouny, H., Samhat, A. E., Bassil, C., & Laouiti, A. (2017). VANET security challenges and solutions: A survey. Vehicular Communications, 7, 7–20.

    Google Scholar 

  50. Singh, D., Ranvijay, & Yadav R. S. (2018). A state-of-art approach to misbehaviour detection and revocation in VANE: Survey. International Journal of Ad Hoc and Ubiquitous Computing, 28(2), 77–93.

    Google Scholar 

  51. Lee, H. K., An, B. S., & Kim, E. J. (2009). Adaptive prefetching scheme using web log mining in cluster-based web systems. In 2009 IEEE international conference on web services (pp. 903–910). IEEE.

  52. Pallis, G., Vakali, A., & Pokorny, J. (2008). A clustering-based prefetching scheme on a web cache environment. Computers & Electrical Engineering, 34(4), 309–323.

    MATH  Google Scholar 

  53. Arkian, H. R., Atani, R. E., Diyanat, A., & Pourkhalili, A. (2015). A cluster-based vehicular cloud architecture with learning-based resource management. The Journal of Supercomputing, 71(4), 1401–1426.

    Google Scholar 

  54. Shokouhifar, M., & Jalali, A. (2015). A new evolutionary based application specific routing protocol for clustered wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), 432–441.

    Google Scholar 

  55. Ramakrishnan, B., Nishanth, R. B., Joe, M. M., & Selvi, M. (2017). Cluster based emergency message broadcasting technique for vehicular ad hoc network. Wireless Networks, 23(12), 233–248.

    Google Scholar 

  56. Zhang, J., Ren, M., Labiod, H., & Khoukhi, L. (2017). Every dog has its day: A comparative study of clustering algorithms in VANETs. In 2017 IEEE symposium on computers and communications (ISCC) (pp. 383–389). IEEE.

  57. Gerla, M., & Tsai, J. T.-C. (1995). Multicluster, mobile, multimedia radio network. Wireless Networks, 1(3), 255–265.

    Google Scholar 

  58. Benslimane, A., Taleb, T., & Sivaraj, R. (2011). Dynamic clustering-based adaptive mobile gateway management in integrated VANET—3G heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 29(3), 559–570.

    Google Scholar 

  59. Benslimane, A., Barghi, S., & Assi, C. (2011). An efficient routing protocol for connecting vehicular networks to the internet. Pervasive and Mobile Computing, 7(1), 98–113.

    Google Scholar 

  60. Setiawan, F. P., Bouk, S. H., & Sasase, I. (2008). An optimum multiple metrics gateway selection mechanism in MANET and infrastructured networks integration. In 2008 IEEE wireless communications and networking conference (pp. 2229–2234). IEEE.

  61. Sommer, C., & Dressler, F. (2007). The DYMO routing protocol in VANET scenarios. In 2007 IEEE 66th vehicular technology conference (pp. 16–20). IEEE.

  62. Morales, M. M. C., Hong, C. S., & Bang, Y. C. (2011). An adaptable mobility-aware clustering algorithm in vehicular networks. In 2011 13th Asia-Pacific network operations and management symposium (pp. 1–6). IEEE.

  63. Basu, P., Khan, N., & Little, T. D. (2001). A mobility based metric for clustering in mobile ad hoc networks. In Proceedings 21st international conference on distributed computing systems workshops (pp. 413–418). IEEE.

  64. Zhang, Y., Ng, J. M., & Low, C. P. (2009). A distributed group mobility adaptive clustering algorithm for mobile ad hoc networks. Computer Communications, 32(1), 189–202.

    Google Scholar 

  65. Konstantopoulos, C., Gavalas, D., & Pantziou, G. (2008). Clustering in mobile ad hoc networks through neighborhood stability-based mobility prediction. Computer Networks, 52(9), 1797–1824.

    MATH  Google Scholar 

  66. Singh, D., Yadav, R. S., et al. (2016). NWCA: A new weighted clustering algorithm to form stable cluster in VANET. In Proceedings of the second international conference on information and communication technology for competitive strategies (p. 20). ACM.

  67. Ren, M., Khoukhi, L., Labiod, H., Zhang, J., & Veque, V. (2017). A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs). Vehicular Communications, 9, 233–241.

    Google Scholar 

  68. Mehmood, A., Khanan, A., Mohamed, A. H. H., Mahfooz, S., Song, H., & Abdullah, S. (2018). ANTSC: An intelligent Naïve Bayesian probabilistic estimation practice for traffic flow to form stable clustering in VANET. IEEE Access, 6, 4452–4461.

    Google Scholar 

  69. Cheng, X., & Huang, B. (2019). A center-based secure and stable clustering algorithm for VANETs on highways. Wireless Communications and Mobile Computing,. https://doi.org/10.1155/2019/8415234.

    Article  Google Scholar 

  70. Joshua, C. J., Duraisamy, R., & Varadarajan, V. (2019). A reputation based weighted clustering protocol in VANET: A multi-objective firefly approach. Mobile Networks and Applications, 24, 1199–1209.

    Google Scholar 

  71. Rawashdeh, Z. Y., & Mahmud, S. M. (2012). A novel algorithm to form stable clusters in vehicular ad hoc networks on highways. EURASIP Journal on Wireless Communications and Networking, 2012(1), 15.

    Google Scholar 

  72. Lin, C. R., & Gerla, M. (1997). Adaptive clustering for mobile wireless networks. IEEE Journal on Selected areas in Communications, 15(7), 1265–1275.

    Google Scholar 

  73. Ucar, S., Ergen, S. C., & Ozkasap, O. (2015). Multihop-cluster-based IEEE 802.11 p and LTE hybrid architecture for VANET safety message dissemination. IEEE Transactions on Vehicular Technology, 65(4), 2621–2636.

    Google Scholar 

  74. Mohammad, S. A., & Michele, C. W. (2010). Using traffic flow for cluster formation in vehicular ad-hoc networks. In IEEE local computer network conference (pp. 631–636). IEEE.

  75. Yang, F., Lin, Z., & Tang, Y. (2014). A traffic flow based clustering scheme for VANETs. Sensors & Transducers, 180(10), 110.

    Google Scholar 

  76. Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79–116.

    Google Scholar 

  77. Rossi, G. V., Fan, Z., Chin, W. H., & Leung, K. K. (2017). Stable clustering for ad-hoc vehicle networking. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  78. Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. London: Luniver Press.

    Google Scholar 

  79. Keerthipriya, N., & Latha, R. S. (2015). Adaptive cluster formation in MANET using particle swarm optimization. In 2015 3rd international conference on signal processing, communication and networking (ICSCN) (pp. 1–7). IEEE.

  80. Shahzad, W., Khan, F. A., & Siddiqui, A. B. (2009). Clustering in mobile ad hoc networks using comprehensive learning particle swarm optimization (CLPSO). In International conference on future generation communication and networking (pp. 342–349). Springer.

  81. Maslekar, N., Mouzna, J., Labiod, H., Devisetty, M., & Pai, M. (2011). Modified C-DRIVE: Clustering based on direction in vehicular environment. In 2011 IEEE intelligent vehicles symposium (IV) (pp. 845–850). IEEE.

  82. Khakpour, S., Pazzi, R. W., & El-Khatib, K. (2013). A distributed clustering algorithm for target tracking in vehicular ad-hoc networks. In Proceedings of the third ACM international symposium on design and analysis of intelligent vehicular networks and applications (pp. 145–152). ACM.

  83. Wolny, G. (2008). Modified DMAC clustering algorithm for VANETs. In 2008 third international conference on systems and networks communications (pp. 268–273). IEEE.

  84. Khakpour, S., Pazzi, R. W., & El-Khatib, K. (2014). A prediction based clustering algorithm for target tracking in vehicular ad-hoc networks. In Proceedings of the fourth ACM international symposium on Development and analysis of intelligent vehicular networks and applications (pp. 39–46). ACM.

  85. Aslam, J., Lim, S., Pan, X., & Rus, D. (2012). City-scale traffic estimation from a roving sensor network. In Proceedings of the 10th ACM conference on embedded network sensor systems (pp. 141–154). ACM.

  86. Venkataraman, H., Delcelier, R., & Muntean, G. M. (2013). A moving cluster architecture and an intelligent resource reuse protocol for vehicular networks. Wireless Networks, 19(8), 1881–1900.

    Google Scholar 

  87. Cardoso, R. M., Mastelari, N., & Bassora, M. F. (2013). Internet of things architecture in the context of intelligent transportation systems—A case study towards a web-based application deployment. In 22nd international congress of mechanical engineering (COBEM 2013) (pp. 7751–7760).

  88. Balzano, W., Murano, A., & Stranieri, S. (2017). Logic-based clustering approach for management and improvement of VANETs. Journal of High Speed Networks, 23(3), 225–236.

    Google Scholar 

  89. Kriegel, H.-P., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(3), 231–240.

    Google Scholar 

  90. Luo, Q., Li, C., Ye, Q., Luan, T. H., Zhu, L., & Han, X. (2017). CFT: A cluster-based file transfer scheme for highway VANETs. In 2017 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  91. Ahmad, I., Noor, R. M., Zaba, M. R., Qureshi, M. A., Imran, M., & Shoaib, M. (2019). A cooperative heterogeneous vehicular clustering mechanism for road traffic management. International Journal of Parallel Programming,. https://doi.org/10.1007/s10766-019-0062.

    Article  Google Scholar 

  92. Yang, Y., Wang, P., Wang, C., & Liu, F. (2014). An EMBMS based congestion control scheme in cellular-VANET heterogeneous networks. In 17th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1–5). IEEE.

  93. Mehra, R., Bali, R. S., & Kaur, P. (2016). Efficient clustering based OLSR routing protocol for VANET. In 2016 symposium on colossal data analysis and networking (CDAN) (pp. 1–7). IEEE.

  94. Rivoirard, L., Wahl, M., Sondi, P., Berbineau, M., & Gruyer, D. (2018). Chain-branch-leaf: A clustering scheme for vehicular networks using only V2V communications. Ad Hoc Networks, 68, 70–84.

    Google Scholar 

  95. Zhao, P. F., Liu, K., Zhang, Y., Zhang, T., & Liu, F. (2018). A clustering-based fast and stable routing protocol for vehicular ad hoc networks. Journal of Physics: Conference Series, 1060, 012050.

    Google Scholar 

  96. Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet, P., et al. (2003). Optimized link state routing protocol (OLSR).

  97. Ahizoune, A., & Hafid, A. (2012). A new stability based clustering algorithm (SBCA) for VANETs. In 37th annual IEEE conference on local computer networks-workshops (pp. 843–847). IEEE.

  98. Wang, S. S., & Lin, Y. S. (2013). PassCAR: A passive clustering aided routing protocol for vehicular ad hoc networks. Computer Communications, 36(2), 170–179.

    MathSciNet  Google Scholar 

  99. Li, G., Boukhatem, L., & Wu, J. (2016). Adaptive quality-of-service-based routing for vehicular ad hoc networks with ant colony optimization. IEEE Transactions on Vehicular Technology, 66(4), 3249–3264.

    Google Scholar 

  100. Wei, D., Cao, H., & Liu, Z. (2016). Trust-based ad hoc on-demand multipath distance vector routing in MANETs. In 2016 16th international symposium on communications and information technologies (ISCIT) (pp. 210–215). IEEE.

  101. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings WMCSA’99. Second IEEE workshop on mobile computing systems and applications (pp. 90–100). IEEE.

  102. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer Communication Review, 24, 234–244.

    Google Scholar 

  103. Eiza, M. H., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504.

    Google Scholar 

  104. Khan, Z., & Fan, P. (2016). A novel triple cluster based routing protocol (TCRP) for VANETs. In 2016 IEEE 83rd vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  105. Eiza, M. H., Ni, Q., Owens, T., & Min, G. (2013). Investigation of routing reliability of vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 179.

    Google Scholar 

  106. Yang, P., Wang, J., Zhang, Y., Tang, Z., & Song, S. (2015). Clustering algorithm in VANETs: A survey. In 2015 IEEE 9th international conference on anti-counterfeiting, security, and identification (ASID) (pp. 166–170). IEEE.

  107. Gao, N., Tang, L., Li, S., & Chen, Q. (2014). A hybrid clustering-based MAC protocol for vehicular ad hoc networks. In 2014 international workshop on high mobility wireless communications (pp. 183–187). IEEE.

  108. Zhang, Y., Liu, K., Liu, S., Zhang, J., Zhang, T., Xu, Z., & Liu, F. (2018). A clustering-based collision-free multichannel MAC protocol for vehicular ad hoc networks. In 2018 IEEE 88th vehicular technology conference (VTC-Fall) (pp. 1–7). IEEE.

  109. Kim, T., Jung, S., & Lee, S. (2009). CMMP: Clustering-based multi-channel MAC protocol in VANET. In 2009 second international conference on computer and electrical engineering (Vol. 1, pp. 380–383). IEEE, 2009.

  110. Mammu, A. S. K., Hernandez-Jayo, U., & Sainz, N. (2013). Cluster-based MAC in VANETs for safety applications. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1424–1429). IEEE.

  111. Azizian, M., Cherkaoui, S., & Hafid, A. S. (2016). A distributed D-hop cluster formation for VANET. In 2016 IEEE wireless communications and networking conference (pp. 1–6). IEEE.

  112. Rezgui, J., Cherkaoui, S., & Chakroun, O. (2011). Deterministic access for DSRC/802.11 p vehicular safety communication. In 2011 7th international wireless communications and mobile computing conference (pp. 595–600). IEEE.

  113. Hafeez, K. A., Zhao, L., Mark, J. W., Shen, X., & Niu, Z. (2013). Distributed multichannel and mobility-aware cluster-based MAC protocol for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 62(8), 3886–3902.

    Google Scholar 

  114. Hang, S., & Zhang, X. (2007). Clustering-based multichannel mac protocols for QOS provisionings over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 56(6), 3309–3323.

    Google Scholar 

  115. Hui, J., & Devetsikiotis, M. (2005). A unified model for the performance analysis of IEEE 802.11 e EDCA. IEEE Transactions on Communications, 53(9), 1498–1510.

    Google Scholar 

  116. Amirat, H., Lagraa, N., Kerrach, C. A., & Ouinten, Y. (2018). Fuzzy clustering for misbehaviour detection in VANET (pp. 200–204). https://doi.org/10.1109/SaCoNeT.2018.8585454.

  117. BrijilalRuban, C., & Paramasivan, B. (2018). Cluster-based secure communication and certificate revocation scheme for VANET. The Computer Journal, 62(2), 263–275.

    Google Scholar 

  118. Gazdar, T., Benslimane, A., & Belghith, A. (2011). Secure clustering scheme based keys management in VANETs. In 2011 IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  119. Möller-Levet, C. S., Klawonn, F., Cho, K. H., & Wolkenhauer, O. (2003). Fuzzy clustering of short time-series and unevenly distributed sampling points. In International symposium on intelligent data analysis (pp. 330–340). Springer.

  120. Gazdar, T., Benslimane, A., Belghith, A., & Rachedi, A. (2014). A secure cluster-based architecture for certificates management in vehicular networks. Security and Communication Networks, 7(3), 665–683.

    Google Scholar 

  121. Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.

    Google Scholar 

  122. Raya, M., Papadimitratos, P., & Hubaux, J.-P. (2006). Securing vehicular communications. IEEE Wireless Communications, 13(5), 8–15.

    Google Scholar 

  123. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks. Computer Communications, 36(13), 1422–1435.

    Google Scholar 

  124. Daeinabi, A., & Rahbar, A. G. (2014). An advanced security scheme based on clustering and key distribution in vehicular ad-hoc networks. Computers & Electrical Engineering, 40(2), 517–529.

    Google Scholar 

  125. Chim, T. W., Yiu, S. M., Hui, L. C., & Li, V. O. (2012). VSPN: VANET-based secure and privacy-preserving navigation. IEEE Transactions on Computers, 63(2), 510–524.

    MathSciNet  Google Scholar 

  126. Fan, P., Mohammadian, A., Nelson, P. C., Haran, J., & Dillenburg, J. (2007). Technical report: A novel direction-based clustering algorithm in vehicular ad hoc networks.

  127. Zhu, L., Li, C., Wang, Y., Luo, Z., Liu, Z., Li, B., et al. (2015). On stochastic analysis of greedy routing in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3353–3366.

    Google Scholar 

  128. Qi, W., Song, Q., Wang, X., Guo, L., & Ning, Z. (2018). SDN-enabled social-aware clustering in 5G-VANET systems. IEEE Access, 6, 28213–28224.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Quality Improvement Programme of All India Council for Technical Education (AICTE), India, to support the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Katiyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, A., Singh, D. & Yadav, R.S. State-of-the-art approach to clustering protocols in VANET: a survey. Wireless Netw 26, 5307–5336 (2020). https://doi.org/10.1007/s11276-020-02392-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02392-2

Keywords

Navigation