Skip to main content
Log in

Catora: congestion avoidance through transmission ordering and resource awareness in delay tolerant networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The proliferation of wireless mobile devices encourages research into their employment to form delay tolerant networks (DTN) for such applications as disaster response, military communications, and crowdsourcing. Within a DTN, messages are exchanged between nodes following a store-carry-forward paradigm, which is notably susceptible to congestion and can lead to a crippling in network performance. A DTN’s time-dynamic topology departs from traditional network definitions in its unpredictable and volatile nature, thus prohibiting the effective adoption of traditional network solutions to this problem. In this paper, the Catora system is proposed as a multi-copy message exchange and buffer management system designed to both aid in the delivery of prioritized messages and mitigate congestion and its degradation. Operating around the distinct ordering of messages for transfer, delivery, and deletion, Catora propagates messages so as to balance their dissemination, hasten the delivery of high priority messages, and avoid congestion through strategic buffer management. Simulations using two real-world datasets demonstrate Catora’s capability to quickly deliver more messages at reduced overhead costs when compared to benchmarks and the state-of-the-art, even when the network suffers from congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Birrane, E. J. (2013). Congestion modeling in graph-routed delay tolerant networks with predictive capacity consumption. In 2013 IEEE Global Communications Conference (GLOBECOM) (pp. 3016–3022). https://doi.org/10.1109/GLOCOM.2013.6831534

  2. Casteigts, A., Flocchini, P., Mans, B., & Santoro, N. (2014). Measuring temporal lags in delay-tolerant networks. IEEE Transactions on Computers, 63(2), 397–410. https://doi.org/10.1109/TC.2012.208.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaintreau, A., Hui, P., Scott, J., Gass, R., Crowcroft, J., & Diot, C. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6(6), 606–620. (previously published in the Proceedings of IEEE INFOCOM 2006).

    Article  Google Scholar 

  4. Cho, J., & Chen, I. (2018). Provest: Provenance-based trust model for delay tolerant networks. IEEE Transactions on Dependable and Secure Computing, 15(1), 151–165. https://doi.org/10.1109/TDSC.2016.2530705.

    Article  Google Scholar 

  5. Daly, E. M., & Haahr, M. (2009). Social network analysis for information flow in disconnected delay-tolerant manets. IEEE Transactions on Mobile Computing, 8(5), 606–621. https://doi.org/10.1109/TMC.2008.161.

    Article  Google Scholar 

  6. Datta, S., & Madria, S. E (2018). Secure information forwarding through fragmentation in delay-tolerant networks. In IEEE 37th International Symposium on Reliable Distributed Systems (SRDS), Oct. 2018 (pp. 93–102). IEEE.

  7. Datta, S., Madria, S. (2019). Efficient photo crowdsourcing in delay-tolerant networks with evolving pois. In 2019 20th IEEE International Conference on Mobile Data Management (MDM) (pp. 150–159). https://doi.org/10.1109/MDM.2019.00-62

  8. Davis, J. A., Fagg, A. H., & Levine, B. N. (2001). Wearable computers as packet transport mechanisms in highly-partitioned ad-hoc networks. In Proceedings Fifth International Symposium on Wearable Computers (pp. 141–148). https://doi.org/10.1109/ISWC.2001.962117

  9. Ericsson: Ericsson mobility report special edition: World economic forum. Tech. rep., World Economic Forum (2019). https://www.ericsson.com/assets/local/mobility-report/documents/2019/ericsson-mobility-report-world-economic-forum.pdf

  10. Grundy, A., Radenkovic, M. (2010). Promoting congestion control in opportunistic networks. In 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (pp. 324–330). https://doi.org/10.1109/WIMOB.2010.5645048

  11. Hsu, Y., & Hu, C. (2016). Enhanced buffer management for data delivery to multiple destinations in dtns. IEEE Transactions on Vehicular Technology, 65(10), 8735–8739. https://doi.org/10.1109/TVT.2015.2503431.

    Article  Google Scholar 

  12. Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589. https://doi.org/10.1109/TMC.2010.246.

    Article  Google Scholar 

  13. Iranmanesh, S. (2016). A novel queue management policy for delay-tolerant networks. EURASIP Journal on Wireless Communications and Networking, 2016(1), 88. https://doi.org/10.1186/s13638-016-0576-6.

    Article  Google Scholar 

  14. Jain, S., & Chawla, M. (2018). A fuzzy logic based buffer management scheme with traffic differentiation support for delay tolerant networks. Telecommunication Systems, 68(2), 319–335. https://doi.org/10.1007/s11235-017-0394-0.

    Article  Google Scholar 

  15. Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM’04. (pp. 145–158). ACM, New York, NY, USA. DOI:https://doi.org/10.1145/1015467.1015484

  16. Jiang, G., Chen, J., & Shen, Y. (2014). Delivery ratio- and buffered time-constrained: Multicasting for delay tolerant networks. Journal of Network and Computer Applications, 44, 92–105. https://doi.org/10.1016/j.jnca.2014.05.004.

    Article  Google Scholar 

  17. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd International Conference on Simulation Tools and Techniques, SIMUTools’09 (pp. 1–10). ICST, New York, NY, USA. https://doi.org/10.4108/ICST.SIMUTOOLS2009.5672

  18. Liaqat, H. B., Ali, A., Qadir, J., Bashir, A. K., Bilal, M., & Majeed, F. (2019). Socially-aware congestion control in ad-hoc networks: Current status and the way forward. Future Generation Computer Systems, 97, 634–660. https://doi.org/10.1016/j.future.2019.02.017.

    Article  Google Scholar 

  19. Lindgren, A., Doria, A., & Schelén, O. (2004). Probabilistic routing in intermittently connected networks. In P. Dini, P. Lorenz, & J. N. de Souza (Eds.), Service Assurance with Partial and Intermittent Resources. Lecture Notes in Computer Science (Vol. 3126, pp. 239–254). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  20. Lindgren, A., & Phanse, K. S. (2006). Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks. In 2006 1st International Conference on Communication Systems Software Middleware (pp. 1–10). DOI:https://doi.org/10.1109/COMSWA.2006.1665196

  21. Pham, T. N. D., Yeo, C. K., Yanai, N., & Fujiwara, T. (2018). Detecting flooding attack and accommodating burst traffic in delay-tolerant networks. IEEE Transactions on Vehicular Technology, 67(1), 795–808. https://doi.org/10.1109/TVT.2017.2748345.

    Article  Google Scholar 

  22. Pietiläinen, A. K., & Diot, C. (2012). CRAWDAD dataset thlab/sigcomm2009 (v. 2012-07-15). Downloaded from https://crawdad.org/thlab/sigcomm2009/20120715/mobiclique. Traceset: mobiclique https://doi.org/10.15783/C70P42

  23. Pietiläinen, A. K., & Diot, C. (2012). Dissemination in opportunistic social networks: The role of temporal communities. In MobiHoc’12: Proceedings of the 13th International Symposium on Mobile Ad Hoc Networking and Computing (pp. 165–174). https://doi.org/10.1145/2248371.2248396

  24. Pietiläinen, A. K., Oliver, E., LeBrun, J., Varghese, G., & Diot, C. (2009). Mobiclique: Middleware for mobile social networking. In WOSN’09: Proceedings of 2nd ACM SIGCOMM Workshop on Online Social Networks (pp. 49–54). https://doi.org/10.1145/1592665.1592678

  25. Roy, A., Acharya, T., & Dasbit, S. (2018). Quality of service in delay tolerant networks: A survey. Computer Networks, 130, 121–133. https://doi.org/10.1016/j.comnet.2017.11.010.

    Article  Google Scholar 

  26. Roy, A., Acharya, T., & Dasbit, S. (2019). Fairness in message delivery in delay tolerant networks. Wireless Network, 25(4), 2129–2142. https://doi.org/10.1007/s11276-018-1802-4.

    Article  Google Scholar 

  27. Sandulescu, G., Niruntasukrat, A., & Charnsripinyo, C. (2015). Guaranteed capacity bounds in intermittently-connected networks: A resource-aware, holistic evaluation. Computer Communications, 59, 12–23. https://doi.org/10.1016/j.comcom.2014.12.008.

    Article  Google Scholar 

  28. Scarsella, A., & Stofega, W. (2019). Worldwide smartphone forecast, 2019–2023. Worldwide Smartphone Forecast. https://www.idc.com/getdoc.jsp?containerId=US44916619

  29. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., & Chaintreau, A. (2009). CRAWDAD dataset cambridge/haggle (v. 2009-05-29). Downloaded from https://crawdad.org/cambridge/haggle/20090529/imote. Traceset: imote https://doi.org/10.15783/C70011

  30. Silva, A. P., Burleigh, S., Hirata, C. M., & Obraczka, K. Ad Hoc Networks https://doi.org/10.1016/j.adhoc.2014.07.032

  31. Silva, A. P., Hilário, M. R., Hirata, C. M., & Obraczka, K. (2015). A percolation-based approach to model dtn congestion control. In 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems (pp. 100–108). https://doi.org/10.1109/MASS.2015.91

  32. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking, WDTN’05 (pp. 252–259). ACM, New York, NY, USA. https://doi.org/10.1145/1080139.1080143.

  33. Uchida, N., Kuga, H., Ishida, T., & Shibata, Y. (2019). Implementation of wifi p2p based dtn routing and gateway for disaster information networks. In L. Barolli, F. Xhafa, N. Javaid, & T. Enokido (Eds.), Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 139–146). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  34. Vahdat, A., & Becker, D. Epidemic routing for partially-connected ad hoc networks. Tech. rep., Duke University. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.6151

  35. Wang, K., Guo, H., Shu, L., & Liu, B. (2014). An improved congestion control algorithm based on social awareness in delay tolerant networks. In 2014 IEEE International Conference on Communications (ICC) (pp. 1773–1777). https://doi.org/10.1109/ICC.2014.6883579

  36. Wu, J., Chen, Z., & Zhao, M. (2019). Information cache management and data transmission algorithm in opportunistic social networks. Wireless Networks, 25(6), 2977–2988. https://doi.org/10.1007/s11276-018-1691-6.

    Article  Google Scholar 

  37. Xia, F., Liaqat, H. B., Ahmed, A. M., Liu, L., Ma, J., Huang, R., et al. (2016). User popularity-based packet scheduling for congestion control in ad-hoc social networks. Journal of Computer and System Sciences, 82(1, Part B), 93–112. https://doi.org/10.1016/j.jcss.2015.07.002.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Madria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGeehan, D., Madria, S.K. Catora: congestion avoidance through transmission ordering and resource awareness in delay tolerant networks. Wireless Netw 26, 5919–5937 (2020). https://doi.org/10.1007/s11276-020-02416-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02416-x

Keywords

Navigation