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Abstract—Traditional seismic acquisition systems suffer from a
number of difficulties related to telemetry cables that are used as
a means of data transmission. Transforming the traditional seis-
mic acquisition system to a wireless system has been considered
as a potential solution to most of these difficulties. The wireless
seismic acquisition system has to serve a huge aggregate data
rate requirement as is usually the case in a large wireless sensor
network. This paper considers the wireless acquisition system,
and studies the maximum achievable transmission data rates
from the geophones to the wireless gateways. Successive interfer-
ence cancellation decoding is assumed to be used at the gateway
nodes. We consider the problem of sum-rate maximization by
optimizing the decoding process at each gateway node. The
optimization searches for optimal decoding set at each gateway,
i.e. which group of geophones will be decoded at each gateway.
Various integer programming algorithms are proposed for solving
the maximization problem. These optimization algorithms are
simulated and compared among each other, where it is shown
that the ant system algorithm achieves the highest sum-rate with
lower computational complexity compared to other algorithms.
Furthermore, the data delivery from the gateways to the data cen-
ter is also considered. In this stage, two gateways with different
buffer sizes are studied. For small-size buffers, two optimization
problems are identified and solved. The first problem considers
the minimization of the total power of the gateways, and the
second problem considers power fairness between the gateways.
For large-size buffers, the problem of maximizing the weighted
sum rate of the gateways is solved.

I. INTRODUCTION

Traditional seismic acquisition systems employ cables to
efficiently transmit data from the geophones (GPs) to the
data center (DC). Telemetry cables, although efficient and
reliable, are a burden in terms of cost and weight. With
surveys growing larger in scale, costs of deployment and
maintenance become proportionally higher. Furthermore, envi-
ronments with complex terrains render deployment of cabled
systems impractical. Hence, there is an increasing trend in oil
exploration companies to shift to wireless technology in order
to avoid these difficulties. Aspects for the transition to wireless
acquisition include proper choice of wireless technology, the
need for efficient communication protocols and reliable data
transfer. Driven by the trend towards wireless seismic survey-
ing, several authors studied cable-less surveys and wireless
architectures in the literature. Savazzi et al. [1] proposed to
use ultra-wide band wireless technologies in land seismic
acquisition systems, where a hierarchical architecture-based,
short-range and long-range communication were developed for

two stage data delivery. Freed [2] argued for nodal systems,
where geophones receive seismic data continuously and store
them for future retrieval. This eliminates the need for real-
time data acquisition especially with a substantial number of
channels. Ellis [3] proposed a hybrid system that combines
cable and cable-less acquisition systems. Reddy et al. [4]
proposed a network architecture based on the IEEE 802.11af
standard. The proposed architecture offers a high transmission
data rate by operating in the TV white space. Most common
wireless sensor network (WSN) topologies are tree, mesh
and star topologies [5]–[9]. In a tree topology, the nodes are
organized in a hierarchical structure. The root node serves
intermediate nodes, that in turn serve other lower-level nodes.
In a star topology, the central node is connected to all the other
nodes. On the other hand, in a mesh topology, all the nodes
are connected to each other through one-hop or multi-hop
distances. The structure adopted in this work is an enhanced
version of the tree structure where the gateways (GWs) act as
intermediate nodes between the GPs and the DC. In contrast
to the conventional tree topology, any GP is assumed to be
capable of transmitting its data to all GWs, rather than to
a single GW only (as depicted in Fig. 1). This relaxes the
constraints on the sum-rate achieved by the GPs, which is
essential in the formulation of the first problem related to
sum-rate maximization. To the best of our knowledge, this
structure and the objective, i.e. sum-rate maximization of the
GPs have not been studied in a previous work. Allowing the
GPs to send their data to all the GWs encourages random
placement of the GWs. Hence, drones can be used as GWs to
receive and store GPs’ data. This is an improvement compared
to the work in [10], where GWs are assumed to be in fixed
position. Furthermore, in contrast to the previous works, and
building on the work done in [11], the focus of this paper is on
the theoretical aspect of the geo-seismic network, which was
found to be underrepresented in the literature. Study of upper
bounds on the network sum-rate provides us with knowledge
on the transmission capabilities of the geo-seismic network.
It also presents a valuable insight on how the decoding and
selection processes at the GWs could affect the achievable
individual rates of the GPs as well as the combined sum-rate.
For this purpose, comparisons between the case of optimizing
the set of GPs to be decoded at each GW along with their
decoding order, in order to maximize the achievable sum-rate
and the case of no-optimization are presented. In this work, the
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Fig. 1. a) A traditional tree structure and b) the modified tree adopted.

wireless system capability in terms of sum-rate is optimized.
Information-theoretic bounds are used to gain insight into the
achievable rates of the system. For this purpose, successive
interference cancellation (SIC) is assumed at the (GWs).
SIC is performed by successively decoding one of the GPs
signals and subtracting it from the original signal, and then
repeating the process for the rest of GPs, and thus reducing
the interference after each decoding process. It is known that
SIC achieves the capacity of the multiple access channel at
each GW [12].

Furthermore, in this paper, the data transmission from the
wireless GWs to the DC is considered. The DC uses SIC to
decode the signals of the GWs and achieves the capacity of the
multiple access channel (MAC). Although the problem in this
work is formulated for seismic acquisition, it can be applied
in general to other WSNs by taking the specifications into
consideration. In summary, the contributions of the paper are
as follows:

1) The problem of maximizing the sum-rate of the GPs
using SIC is formulated and three main metaheuristic
algorithms are proposed to solve it.

2) The problem of data transmission from the GWs to the
DC, for GWs with small buffers, is considered for two
different objective functions and solved.

3) The problem of maximizing the weighted sum of the
GWs rates is solved.

The rest of the paper is organized as follows. In Section
II, the system model is presented. In Section III, the mathe-
matical formulation of the proposed optimization problems is
discussed. The proposed integer programming algorithms to
solve the first optimization problem are presented in Section
IV and in Section V findings and discussions are shown.
Finally, in Section VI the concluding remarks are presented
followed by an appendix.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this work, the deployment of wireless GPs in a grid-
like network to cover the whole survey area is considered,
where wireless GWs are deployed between the GP lines. The
purpose of GWs is to collect data from the GPs, possibly store
them for some time, and then forward the collected data to the
DC for processing [13]. A typical land survey deploys 20,000
to 30,000 GPs over a large area on the order of 20 km2. A
GP equipped with a 24-bit analog-to-digital converter (ADC)
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Fig. 2. A plane view of an orthogonal geometric wireless acquisition system

generates sampled data at a rate of 144 kbps, with a sampling
interval of 0.5 ms. The aggregate data rate for a typical survey
can be about 4.32 Gbps, when all the GPs are active. A plane
view of an orthogonal geometry survey is shown in Fig. 2,
where two GWs are placed between the source and receiver
lines to harvest the data from the GPs. Fig. 2 also depicts the
first and second stages considered in this work, where the first
stage is the data transmission from the GPs to the GWs and
the second stage is the data delivery from the GWs to the
DC. The GWs may have some buffering capability to store
the collected data, then it is sent to the DC for processing.

In this paper, a system that consists of K GPs and N GWs
is considered. The channels between the GPs and the GWs are
assumed to follow a Rayleigh block fading model. This model
is convenient for desert environment and seismic acquisition
applications, where the GPs are placed in fixed positions and
the scatterers are stationary. The channel matrix H has K×N
dimensions. Some assumptions about the system model are
listed below:
• The channels between all the transmitters and receivers

are constant for a fixed interval of time and change
independently between time intervals.

• The transmission period is a fixed time slot which is of
equal width for all transmission sessions.

• The channel state information (CSI) of all channels is
available at all the GWs.

• Each GP transmits with a fixed power, P .
The GWs are using SIC, where they can choose to decode
some of the GPs and consider others as interference to
maximize the total sum-rate of the network. Due to the use of
SIC at the GWs, each GP will have different constraints on
its rate, coming from the different GWs that decode its signal.
The rate of each GP, Rj , must satisfy all these constraints,
which might lead to reducing its rate. Therefore, sometimes it
is better not to decode the GP data at some GW as this will
relax some of the constraints and help increase its rate. The
Shannon normalized capacity is given as,

C = log2

(
1 +

P |h|2

N0

)
, (1)

where C is in bits per second per Hz (bps/Hz), h is the channel
gain value taken from the channel matrix H . The additive
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TABLE I
RATE EXPRESSIONS FOR THE MAX-SUM-RATE CASE

GP Max-sum-rate
1 log2

(
1 +

P |h11|2
N0+P |h31|2

)
2 min

[
log2

(
1+

P |h21|2

N0+P |h11|2+P |h31|2
)
, log2

(
1+

P |h22|2

N0+P |h12|2+P |h32|2
)]

3 log2
(
1 +

P |h32|2
N0+P |h12|2

)

noise is assumed to be Gaussian distributed with a variance
N0. If interference is present, it will appear in the denominator
added to N0. Each GP in a multiple access channel can
transmit with a rate R ≤ C. For multiple GPs transmitting
simultaneously, a multiple access region is characterized by
all the upper bounds on the rates. It is assumed that each GW
will decode the GP signals in a decreasing order, starting from
the signal with highest signal-to-noise ratio (SNR) down to the
signal with the minimum SNR. This will feature fairness to the
weaker signals, while providing the maximum sum-rate [12].
To illustrate how decoding selection at the GWs can affect
the total sum-rate, consider a small representative network of
K = 3 GPs and N = 2 GWs, P = 1mW , N0 = 1mW
as shown in Fig. 3. The channel gain matrix H is generated
following Rayleigh random density function and is given as,

H =

 3.023 1.133
1.738 2.168
0.542 0.896

 .
In this case, by going through all possible decoding order com-
binations, the one that gives the maximum sum-rate (denoted
as max-sum-rate) is illustrated in the first stage in Fig. 3, where
GW1 decodes GP2 then GP1 (solid arrow), while treating
GP3 as interference (dashed arrow), and GW2 decodes GP2
then GP3, while treating GP1 as interference. To see the rate
expressions for both cases please refer to Table I and Table II.
The rate expressions can be verified from (2) by considering
the individual constraints on the rates. By substituting the
values, the total sum-rate for the max-sum-rate case is found to
be
∑
R ≤ 3.813 bps/Hz. Now compare this with the decode-

all case, where all the GWs will decode all the GPs without
doing any kind of optimization. In this case, it can be found
that

∑
R ≤ 2.483 bps/Hz. The individual rates for the two

cases are shown in Table III. As can be seen, decoding a GP
at multiple GWs puts more constraints on the rate of that
GP, which might result in reducing its rate. However, this
could present opportunities to increase the rates of other GPs,
as is the case in max-sum-rate where the rate of GP2 was
decreased to 0.3668 bps/Hz, but it helped to increase the rate
of GP1 to 3.011 bps/Hz. Therefore, for some GPs, it might
be better not to decode them at all GWs, while for others it
will improve the sum-rate if they are decoded at all GWs. And
this is the optimization problem that is considered in the first
stage presented in the paper, i.e. how to optimize the set of
GPs to be decoded at each GW so as to maximize the network
sum-rate.

Following that, the second stage is considered, where the
delivery of data to the DC is studied. In the second stage, two
optimization problems are considered based on the length of

TABLE II
RATE EXPRESSIONS FOR THE DECODE-ALL CASE

GP Decode-all
1 min

[
log2

(
1 +

P |h11|2

N0+P |h21|2+P |h31|2
)
, log2

(
1 +

P |h12|2

N0+P |h32|2
)]

2 min
[

log2

(
1 +

P |h21|2

N0+P |h31|2
)
, log2

(
1 +

P |h22|2

N0+P |h12|2+P |h32|2
)]

3 min
[
log2

(
1 +

P |h31|2
N0

)
, log2

(
1 +

P |h32|2
N0

)]

Fig. 3. The two stages of seismic acquisition considered, for a small network
of K = 3 GPs and N = 2 GWs

the GW buffer. For small-size buffers, the goal is to transmit
all the stored data in the transmission slot. In this case, two
objective criteria are proposed. The first criterion considers
the optimization of the total power expenditure at the GWs.
Each GW is assumed to be constrained with a maximum
transmission power which helps to save its battery. The second
criterion considers power fairness between the GWs. In this
case, only the maximum power is considered as the variable
for optimization. It is proved that for both objective functions
the problem is convex and, hence, convex optimization tech-
niques can be used. The solution is obtained by finding the
optimal values of power and the optimal decoding order at the
DC. Furthermore, an optimization problem is formulated and
proposed for large-size buffers at the GWs. In this case, the
goal is to maximize the weighted-sum rate of the GWs. Each
GW might have a different length of stored data in its buffer
and, hence, it might be necessary to give priority to those
GWs with long queues. Giving priority can be mathematically
done by increasing the weight of those GWs in the objective
function of the optimization problem. The larger the weight
of the GW, the more probable that it will have better rate. The
problem here is a power allocation problem where the total
power is constrained by a maximum value. In this case, the
GWs’ rates are also constrained by all combinations of upper
bounds on the achievable rates. If the survey area changes, the
solution has to be updated by solving the relevant problem. As
can be seen, this work can be generalized and applied to other
WSNs, and not only to seismic acquisition systems.

III. PROBLEMS FORMULATION

The mathematical formulation of the proposed problems is
presented in this section, where the first problem considers
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TABLE III
CAPACITY BOUNDS FOR THE EXAMPLE GIVEN IN FIG. 2

GP Rate (max-sum-rate) Rate (decode-all)
1 3.010 min (1.640, 0.776)
2 min (0.367, 1.335) min (1.738, 1.335)
3 0.435 min (0.372, 0.850)

the sum-rate maximization of the GPs in the first stage. The
following two problems consider the second stage where the
delivery of data to the DC is discussed.

A. Sum-rate Maximization

The sum-rate maximization problem is formulated as an
integer constrained optimization problem as follows:

max
Fji

K∑
j=1

Rj , subject to (2a)

∑
j∈Ω

FjiRj≤log2

(
1+

∑
j∈Ω FjiPj |hji|2

N0+
∑K
m=1
m6=j

(1−FmiPm|hmi|2)

)
,

Fji ∈ {0, 1},∀i ∈ {1, 2, . . . , N},∀Ω, (2b)

where Rj in (2a) is the actual rate of the jth GP and Ω
in (2b) is an element in the set of all combinations

(
K
b

)
,

∀b ∈ {1, 2, . . . ,K}. Each link has an index Fji that takes
the value 1 if the ith GW decides to decode the signal of the
jth GP, otherwise Fji = 0. The set of constraints in (2b) is
a generalized form of the multiple access channel constraints
(with multiple destinations), and it gives all the combinations
of upper bounds on the achievable rates for all the GWs.
The numerator inside the log in (2b) accounts for the sum of
GPs’ powers decoded at the jth GW, while the denominator
represents the noise power added to the interference from all
the GPs not decoded at this GW. Although allowing a GP
signal to be decoded at multiple GWs can introduce redundant
data, it is essential to maximize the sum-rate of all GPs. This
is because decoding a GP’s signal at multiple GWs could
reduce the interference seen by other GPs’ signals and improve
the overall sum-rate. The optimization in (2) is performed on
the links indices; Fji’s. This renders the problem an integer
programming problem, where the search space is comprised
of all decoding combinations and its size, ζ, is given by the
following formula:

ζ =

[
K∑
i=0

(
K

i

)]N
, (3)

To give an idea about how rapidly the size of this search
space increases, consider the network shown in Fig. 3, where
K = 3 and N = 2 then from (3), ζ = 64 combinations, while
when the parameters are increased to K = 30 and N = 5,
there are ζ = 1.427 × 1045 combinations. Going through all
the combinations is a challenging task and consumes huge
resources in terms of time and computations. Therefore, it is
necessary to look for heuristic and metaheuristic methods to
solve this problem. Heuristic algorithms are problem-specific
low-complexity search protocols that provide a sub-optimal

solution by exploring the search space in a faster way. On the
other hand, metaheuristics are high-level algorithms that are
applicable on a wide-range of problems. They are generally
used to solve complex problems where it is hard to develop
a specific algorithm [14]. In Section IV, three sets of meta-
heuristic algorithms are introduced to solve the problem in
(2). Specifically, two variations of particle swarm optimization
(PSO), two variations of ant colony optimization (ACO), and
the simulated annealing (SA) method are discussed.

B. Min-total Power

The min-total power considers the case of data delivery from
the GWs to the DC with minimal total transmission power. It
is formulated as an optimization problem, where the variables
of optimization are the individual transmission powers of the
GWs, and the decoding order at the DC. The importance of
the decoding order is that it affects the individual rate for each
GW. The problem is formulated below,

min
Pi,∀i

PTotal subject to

0 ≤Pi ≤ Pmax∑
i∈Ω

Qi ≤ log2

(
1 +

∑
i∈Ω Pi|gi|2

N0

)
,∀Ω, (4)

where PTotal =
∑N
i=1 Pi and gi is the channel gain of the

link between the ith GW and the DC. Here, Qi refers to the
normalized data rate in bits/s of the ith GW such that Qi = qi

T
where qi is the amount of data stored in the ith GW, in bits,
and T is the transmission time, which is a fixed time slot for
the GWs. Given the constraints in (4), the GWs powers are
optimized, and from the optimal power values, the optimal
decoding order can be constructed. The objective function,
PTotal, is a linear function and is therefore a convex function.
The first set of constraints on Pi,∀i ∈ {1, 2, . . . , N} are linear
constraints too. Thus, each one of them forms a convex set.
The upper bounds on the normalized data are of the type
log(1 + ax + by) > c where a, b and c are constants. Since
the log function is a concave function, these set of constraints
represent a convex set. Therefore, the problem is convex, and
the global optimal solution can be efficiently obtained using
convex optimization techniques such as Newton’s method. The
optimal decoding order at the DC for the problem in (4),
that will minimize the total power expenditure, is to decode
the signals of the GWs based on the channel gain values in
descending order. The proof is given in Appendix 1.

C. Min-max Power

In min-max power, the power fairness between the different
GWs is considered. The objective of this problem is to find
the decoding order at the DC that will minimize the maximum
required transmission power at any of the GWs. The problem
is formulated as a minimax problem, where the variables of
optimization are the individual transmission powers of the
GWs. In the case where the buffers are limited, the GWs
must transmit all the stored data before the arrival of the new
data. The set of all possible MAC achievable rate combinations
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form the constraints on the normalized data rate. For practical
consideration, each GW is assumed to have a maximum power
of Pmax. The problem can be formulated as:

min
Pi,∀i

max
i
Pi subject to

0 ≤Pi ≤ Pmax∑
i∈Ω

Qi ≤ log2

(
1 +

∑
i∈Ω Pi|gi|2

N0

)
,∀Ω. (5)

Similar to min-total power, the convexity of the min-max
power can directly be proved. Once the optimal powers are
achieved, the decoding order can be found from the active
constraints. A possible scenario is that the DC uses time-
sharing between two or more decoding orders in order to
achieve the desired rates and at the same time minimize
the maximum transmission power. For time-sharing between
two decoding order combinations, the sum-rate will be the
maximum value and its point will lie on the line connecting
between the two corners in the capacity region characterized
in (5). To achieve any point on the line, the DC will alternate
between the two corners by giving a weight to each decoding
order characterized by the corner. This may, sometimes, prove
useful to achieve power fairness, by working at a point, where
the maximum power of the GWs will be less than the value
achieved by working at any of the individual decoding order
combinations. A system of linear equations is solved to find
the exact percentage of time for each decoding order at which
the DC should employ successive decoding, to achieve the
desired rate point on the MAC.

D. Max weighted-sum

The objective of the max weighted-sum problem is to
maximize the weighted sum of the rates of the GWs. Each
GW will enjoy a rate that is proportional to its buffer size. The
longer the queue of data in the buffer, the larger is the weight
in the objective function. A constraint of maximum power is
held on the total power of the GWs. Hence, the problem is
to allocate the powers for each GW such that the objective
function is maximized. A set of constraints, that is comprised
of all MAC achievable rate combinations, is also imposed on
the objective function. The problem can be formulated as:

max
Pi,∀i

N∑
i=1

wiRi subject to

0 ≤PTotal ≤ Pmax∑
i∈Ω

Ri ≤ log2

(
1 +

∑
i∈Ω Pi|gi|2

N0

)
,∀Ω, (6)

where wi is the normalized weight of the ith buffer and∑N
i=1 wi = 1. The total power PTotal =

∑N
i=1 Pi, is the sum

of all powers of the GWs. As can be seen in the objective
function, the larger the queue of a buffer of a certain GW, the
more weight it will have. In this problem, the queues of the
buffers are assumed to be large. This is because the time slot
is assumed to be equal in size for all transmission sessions.
When the stored data in the buffers is small in size such that all

the data can be sent within the time slot, a different problem
will appear. The GW that has higher rate will finish sending its
data faster and then it will have zero rate. When this happens,
the upper bounds on the achievable rates will be altered as the
rate of some of the GWs will be zero at some point during the
transmission period. This renders the problem very complex to
solve. Therefore, the focus here is on the case of long buffers
filled with large queues of data, such that all upper bounds on
the achievable rates hold throughout the transmission time.

IV. OPTIMIZATION ALGORITHMS

In this section, the algorithms to solve the optimization
problem in (2) are adopted and conclusion is made based on
performance and complexity.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) uses simple velocity
and position equations to update the particles positions which
correspond to the possible solution [15]–[20]. Velocity here
represents the rate of change of a particle’s position in the
search space. Two variations of PSO are used in this work
for the problem in (2), namely, angle-modulated particle
swarm optimization (AMPSO) and discrete particle swarm
optimization (DPSO). These variations are able to solve the
binary problem at hand.

1) AMPSO: The AMPSO algorithm has proven efficiency,
especially when the dimensionality of the binary vector is large
[21]. The function given in (7), which is derived from angle-
modulation theory, is optimized using PSO. It is given as,

H(x) = sin(2π(x− a)b cos(A)) + d, (7)

where A = 2πc(x − a). a, b, c, d and x are horizontal
shift, maximum frequencies of the sine and cosine functions,
vertical shift and a single element from a set of evenly
separated intervals based on the number of bits, respectively.
The parameters in (7) are substitued into the velocity equation
to update their values and obtain the positions of the new
parameters. The velocity equation is given below:

Vn(t+ 1) = ΦVn(t) + C1R1(Ln(t)− Sn(t)

+ C2R2(G(t)− Sn(t))), (8)

where Φ is the inertia factor, Ln(t) and G(t) are the local and
global best values, respectively. C1 and C2 are the weights
given to the local best and global best values, respectively. R1

and R2 are random numbers that are drawn from a uniform
distribution between 0 and 1, U(0, 1). Sn(t) is the current
optimized parameter, i.e. a, b, c or d. The position update
equation is given simply as: Sn(t+ 1) = Sn(t) + Vn(t+ 1).

2) DPSO: In DPSO, the indices Fji’s in (2) are considered
as a matrix of bits, where each row represents the links
between the GPs and a specific GW, and each bit (index) is
optimized separately. The position of the optimized variable
is restricted to 0 or 1. Velocity here is the probability that a
bit is 1, where y represents the index of the particle and z
represents the index of the dimension. The dimensionality of
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the bits matrix is D = N ×K. The velocity formula is given
as [22]:

Vyz = Vyz + φ1(pyz − xyz) + φ2(pgz − xyz), (9)

where xyz is the position of the yth particle in the dth

dimension, pyz is the bit position of the best performance the
yth particle has achieved so far. pgz is the bit position for the
best performance of all the particles so far (global solution).
Obviously, Vyz is a real-valued number and to translate it to a
probability, a logistical transformation called Sigmoid function
is given as:

S(Vyz) =
1

1 + exp(−Vyz)
, (10)

To determine xyz , a random value ρ is generated from a
uniform distribution in the range [0, 1] . Then, it goes through
the following decision rule:

if ρ < S(Vyz), xyz = 1,

else xyz = 0. (11)

A bound is usually set on velocity so that the algorithm
keeps exploring the search space. The flowchart in Fig. 4
illustrates the detailed steps of the AMPSO and DPSO algo-
rithms. It shows the variables initialization stage, followed by
the process for each iteration. At a given iteration, each particle
updates its potential solution based on the corresponding
velocity equations and then updates the position. The local and
global best solutions are then updated by comparison with the
new solutions offered by the particles.

B. Ant Colony Optimization
Ant Colony Optimization (ACO) is based on observations

of the behavior of real ants [23]–[25]. In order to remember
the path towards home and guide other ants, while searching
randomly for food, they release a chemical substance called
pheromone. The pheromone evaporates with time, which al-
lows the ants to explore other parts of the search space and
avoid being trapped in a local optimum. If there is more
than one path that is taken by ants, the shorter path will
hold pheromone longer since ants take less time walking
through it. Thus, eventually all ants use this shorter path. The
detailed steps of the general ACO algorithm can be followed
in Fig. 5. Firstly, an initialization stage is run by introducing
the pheromone and simulation variables. The probability for
each binary value is estimated by each ant for all possible
paths. Then, ants construct the solution by generating random
values and comparing them with the estimated probabilities.
Each solution is used to find the sum-rate and update the
pheromone. Varieties of ACO algorithms have been developed
in the literature.

1) Ant System (AS): In AS algorithm, all ants that success-
fully constructed a solution update the pheromone values at
each iteration.

τnewcd = (1− γ)τoldcd +

m∑
r=1

∆τ rcd, (12)

where γ is the evaporation coefficient, m is number of ants,
τ is the pheromone value, c ∈ {0, 1} is the index of possible

For AMPSO, (8) is used to update velocity and then position of 

For DPSO, (9) is used to update velocity of each bit and check it is bounded.

For DPSO,  (10) is used to find the probability of having a 

bit of 1, and the bits vector is formed as in (11)

For both algorithms, the decoding order is calculated, 

the individual rates are evaluated for each GP using the 

rate constraints and the decoding order at each GW. 

Finally, the sum-rate is found.

Is sum-rate > Local best?

Update: Local best = sum-rate

Is sum-rate > Global best?

Update: Global best = sum-rate

Is  number of iterations exceeded?

Yes

Yes

Yes

No

No

No

For DPSO, each particle generates and 

randomly using a uniform distribution

AMPSO

DPSO

For AMPSO, are 

introduced. For DPSO, is introduced.

End

Fig. 4. AMPSO and DPSO flowchart

outcomes, d ∈ {1, 2, . . . , D}, D is the dimensionality of the
system, D = K×N , τnewcd is the new value of pheromone for
a link d with possible outcome c and ∆τ rcd is the pheromone
deposit, made by the ant r, based on its sum-rate value. When
constructing a solution, the probability of ant q choosing c ∈
{0, 1} for the dth bit is given by:

pqcd =
ταcdη

β
cd∑

c∈N(sP ) τ
α
cdη

β
cd

, (13)

where N(sP ) is the set of feasible components, i.e. {0, 1} and
ηcd is the heuristic information, which depends on the problem
at hand. It is usually linked to a priori information about the
problem. In our problem, η is linked to the channels’ gains, as
will be shown in Section V. α and β represent the weight given
to the pheromone and to the heuristic information, respectively.

2) Max-Min Ant System (MMAS): In MMAS, only the best
ant updates the pheromone values. Moreover, the pheromone
update is bounded as follows,

τnewcd = [(1− ρ)τoldcd + ∆τ rcd]
τmax
τmin

, (14)

where τmax is the maximum possible value of the pheromone
and τmin is the minimum possible value of pheromone.
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The probability of movement for each bit is 

found using (13)

Each ant generates a random number 

for each bit and constructs the solution serially, if 

prob. => bit =1, else bit = 0

The decoding order,  individual rates and the sum-

rate are calculated using the rate constraints

The pheromone values are 

updated, using (12) for the AS

and (14) for the MMAS

Is the number of iterations 

exceeded?

No

Yes

Random values for the pheromone are generated 

and values for are set

Fig. 5. A flowchart of the detailed steps of the ACO algorithm

C. Simulated Annealing(SA)

Simulated annealing is based on the metal annealing in
material science [26]. It uses restarts to avoid being trapped
in a local maximum. It always accepts moves that improve
the value of the objective function. If this move does not
improve the objective function, then the algorithm may accept
the move with some probability. This probability assumes its
highest value at the beginning of the algorithm. Therefore, the
algorithm is more willing to accept moves that do not improve
the objective function at the beginning to explore the search
space. As the number of iteration increases, that probability
decreases. The willingness of the algorithm to explore new
parts of the search space is signified by a temperature degree.
Therefore, as it decreases gradually, the algorithm becomes
less willing to trade a worse position by its current position.
Moreover, the temperature value is equivalent to the number of
iterations. This algorithm is illustrated in Fig. 6 where T is the
temperature value, ∆E is the difference in sum-rate between
the best solution so far and the next solution.

In Section V, the algorithms are tested and a conclusion is
derived about them based on complexity and performance.

V. RESULTS AND DISCUSSION

To solve the first optimization problem, a limited compu-
tational budget is given to the proposed algorithms in the
simulations. The computational budget is represented as the
maximum temperature (T ) for SA, number of particles/ants
(M ) and iterations (I) for MMAS/AS/DPSO/AMPSO. The

The decoding order at the GWs is found and 

the sum-rate is calculated

A random move is made by flipping a number of 

vector bits, i.e. from 0 to 1 and vice versa

The new decoding order is found, the sum-rate is 

calculated, and the energy difference is 

evaluated, which is the difference in the sum-rate

Is > 0?

A random number is 

generated and the probability 

of movement, is 

found

Is ?

The new solution is adopted

Is ?

No

Yes

Yes

Yes

No

No

is set to and  a random vector of 

bits is generated as an initial solution

End

Fig. 6. A flowchart of the detailed steps of the SA algorithm

constants used in aforementioned algorithms, C1 (C2), Φ,
Vmax for AMPSO, Vmax for DPSO, α (β), τmax (= −τmin)
are set to 1.496, 0.729, 4, 6, 1 and 7, respectively. These
values are obtained using extensive simulation and based on
[27]. In AS, ηcd equals the channel gain when c = 1 and
equals the average of the other channel gains for the same
GW when c = 0. However, as will be discussed shortly,
η must be adapted when the problem involves a very large
search space. In MMAS, a moderate range of τmax is found to
give acceptable results. Furthermore, a big range might cause
convergence stagnation, as the algorithm will keep exploring
without benefitting from favourable findings. The mean square
error (MSE) for the algorithms is calculated with respect to
the optimal solution. The optimal solution is obtained via
exhaustive search (ES) which tries all possible decoding order
combinations and finds the one that gives the maximum sum-
rate. Fig. 7 shows the MSE versus iterations for K = 8
GPs and N = 2 GWs. The size of the search space that
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Fig. 7. MSE versus Iterations for K = 8 GPs and N = 2 GWs

the ES looks through is ζ = 65, 536 combinations. For the
algorithms here, a computational budget of M = 30 and
I = 30 is used. Furthermore, the results are averaged over 100
random channel realizations. As can be seen in Fig. 7, AS and
SA achieve the best convergence results. MMAS and DPSO
achieve comparable results. AMPSO, however, has a slower
convergence and scores the worst results for the final MSE
value. It should be noted that in all results, SA algorithm’s
iterations are modified to match the computational complexity
of other algorithms since it does not entail ants/particles. For
example, in Fig. 7, SA result is modified by multiplying the
number of iterations by M , which is 30. Table IV shows
a comparison between the performance of exhaustive search
(ES) and the proposed algorithms for a small network of 8
GPs and 2 GWs. Here, three different levels of computational
budget of the proposed algorithms are shown. Comparable
results between all the algorithms can be seen, with DPSO
achieving higher results for the first two cases and AS achiev-
ing better results for the third case where the computational
budget is lower. To describe realistic surveys, number of GPs
and GWs must be larger. Therefore, an example of K = 100
and N = 8 is considered. The number of decoding order
combinations here is beyond the capabilities of any practical
computer; ζ ' 6.67 × 10240 combinations. Therefore, the
use of the proposed algorithms with a limited computational
budget becomes very crucial in such cases. Two different
scenarios for how the GPs transmit data to the GWs are
considered. In Scenario 1, the GP is assumed to have a small
buffer. In this case, the GW can hold data only up to the next
transmission session. On the other hand, Scenario 2 assumes
that the GP is equipped with a large buffer to store data for
future time transmissions. This gives the GPs the choice to
transmit at a given transmission session or not based on its
channels’ gains. However, sending the stored data later may
affect the accuracy of the seismic information that reaches the
DC, especially if the channels of those GPs are in a deep fade
for several continuous transmission periods.

Scenario 1) (Real-time) where all the GPs always send data:
In this scenario the powers of all GPs are fixed. Here,

it is more beneficial to decode all the signals sent by the

TABLE IV
ALGORITHMS PERFORMANCE (BPS/HZ) FOR K=8, N=2

ES MMAS AS DPSO SA AMPSO Computational budget

5.49 5.34 5.41 5.49 5.32 5.31
T = 6000
M = 10
I = 600

5.49 5.11 5.17 5.21 4.77 4.76
T = 600
M = 10
I = 60

5.49 4.34 4.68 4.32 3.94 4.03
T = 60
M = 1
I = 60
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Fig. 8. Normalized rate versus Iterations for K = 100 and N = 8. Scenario
1.

GPs due to the existence of interference all the time. Fig. 8
shows the normalized data rate in bps/Hz versus iterations. The
results are averaged over 50 random channel realizations. The
channels follow Rayleigh fading with N0 = 1mW. Here, the
used parameters are M = 250, I = 40 and Tmax = M×I . As
can be seen, AS achieves the best result followed by MMAS,
DPSO, AMPSO and finally SA.

Scenario 2) Buffer-Aided GPs:

All the GPs are assumed to have buffers where they can
store the sampled data before transmission. In this scenario
the decoding order of the GWs can be optimized so that the
sum-rate is even improved over Scenario 1. This is achieved
through deactivation of some of the GPs that generally have
low channel quality. Fig. 9 shows the normalized rate versus
iterations and the results are averaged over 50 random channel
realizations. Here, the used parameters are M = 250, I = 40
and Tmax = M×I . The best result is found to be achieved by
AS, followed by MMAS, DPSO and then AMPSO, while SA
displays the worst performance. Table V shows an example
comparing the performance of no-optimization and the pro-
posed algorithms for the two scenarios simulating a network
of 100 GPs and 8 GWs. The no-optimization case is the special
case where the GWs neither cooperate nor share information
about the decoding order. It can be seen that Scenario 2 results
give comparative advantage in sum-rate over Scenario 1 for
most algorithms. Compared to the small network of K = 8
and N = 2, it can be seen that SA achieves a lower sum-rate
value compared to the no-optimization case.
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TABLE V
ALGORITHMS PERFORMANCE IN SUM-RATE (BPS/HZ) FOR

K=100, N=8

Algorithms Scenario 1 Scenario 2
No-optimization 4.33 4.33

DPSO 6.32 7.51
AMPSO 3.36 4.33

SA 1.38 1.10
AS (η-adapted) 7.77 7.87

AS (η-not adapted) 3.62 4.66
MMAS (η-adapted) 6.92 7.17

MMAS (η-not adapted) 1.87 2.93

Also, it is noticed that AS and MMAS achieve lower sum-
rate values when their heuristic information is not adapted.
This is an interesting observation which indicates the effect
of the convergence speed of metaheuristic algorithms on their
capability to explore the search space in a limited time. Al-
though AS and MMAS belong to ACO algorithms, which have
been proved to always converge, the convergence speed is a
problem that is still not fully explored [28], [29]. To overcome
the issue of the algorithm’s stagnation, the effects of various
parameters such as γ, α, β and η are studied. Except for η, it
is found through simulation that the effects of all parameters
on convergence speed are minimal. However, for η, the choice
of the heuristic information will greatly influence the results.
This is because η biases the search towards regions that are
expected to be promising. For Scenario 1, a weight is given to
each GW that is proportional to the average of the channels
gains associated between all the GPs and this GW. The higher
the average for a certain GW, it is more likely to decode signals
from GPs. This helps increase the sum-rate because when a
GW decodes GPs signals, it will successively eliminate the
interference, which increases the total sum-rate. For Scenario
2, it would be useful to turn off GPs which have all their
links as weak channels. The reason is that those GPs have
insignificant rates, and they cause interference for other users.
Therefore, removing them reduces the unnecessarily limiting
interference present in the network, which will help increase
the rate of other GPs, while only losing the small rate that
belongs to those GPs. To do this, the probability of having an
index of 0 for the links associated with these GPs is increased.
This makes it more probable that GWs will not decode GPs
that have low channel gains. This measure is combined with
the Scenario 1 measure, where each GW will have a weight
to its links that is proportional to the average of the channel
gains. The combined effect directs the search towards regions
that have a higher sum-rate and thus increases the algorithm
performance with limited budget. Table VI shows the time
taken by each algorithm to search for optimal solution for the
same scenario considered in Table V. It can be shown that
the algorithms have a complexity on order of O(IMNK3).
By comparing the time, it is found that SA achieves the best
results by taking the least time. Following it, AS and MMAS
give comparable results, while DPSO and AMPSO achieve the
worst results. However, taking performance and complexity
into consideration, it can be concluded that AS achieves the
best results.
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Fig. 9. Normalized rate versus Iterations for K = 100 and N = 8. Scenario
2.
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Fig. 10. Average GP rate versus number of GPs for different GWs using AS.

Importantly, our problem formulation cna find the total
number of GWs that are required to serve a typical seismic
survey. GP’s rate(144 Kbps [10]) is used for this purpose. AS
and DPSO are used to find the average GP’s rate for various
number of GPs in Fig. 10 and 11, respectively. It is noted that
with AS, for example, 16 GWs can support up to around 360
GPs while maintaining the required average GP rate. However,
when using DPSO, only up to 250 GPs are served.

In the following, two buffer sizes are considered at the GWs,
namely, small-size and large-size buffers.

i. Small-size Buffer

The two variations of this problem are solved using the
fmincon algorithm in MATLAB. The fmincon algorithm uti-

TABLE VI
ALGORITHMS COMPLEXITY IN TIME

Algorithm Time in seconds
DPSO 40

AMPSO 69.95
SA 6.67
AS 13.16

MMAS 14.5
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Fig. 11. Average GP rate versus number of GPs for different GWs using
DPSO.

lizes a number of techniques to solve convex optimization
problems. These techniques include interior-point method and
sequential quadratic programming (SQP). These methods are
based on approximation of the nonlinear constraints with linear
constraints. A case study is considered for eight GWs. Random
sets of stored data Q, and channel gain values G are generated.
The optimal power values for each GW as well as the optimal
decoding order at the DC are found via simulation. The total
power is also calculated. The same channels and stored data
are considered for the two parts of the problem for ease of
comparison.

Case Study: The normalized stored data rates in the buffer
of each GW and the channel gain values between the GWs
and the DC are given below,

Q = [0.996 1.389 1.669 1.219 1.149 0.652 0.913 1.428],

G = [1.095 0.524 2.220 0.967 1.236 1.480 1.837 0.602],

where Q is in bps/Hz. By solving the min-total power, the
individual powers for the GWs are given as,

P1 = 13.61mW P2 = 5.893mW P3 = 94.85mW
P4 = 10.02mW P5 = 26.11mW P6 = 18.88mW
P7 = 29.85mW P8 = 12.20mW,

and the total power, PTotal = 211.405mW. The optimal
decoding order at the DC is found to be as follows:
GW3→ GW7 → GW6 → GW5 → GW1 → GW4 → GW8 → GW2.
However, for the min-max power, the solution is found by
setting all of the powers of the GWs to be,

Pi = 46.06mW, ∀i ∈ {1, 2, ..., 8}

and the total power is, PTotal = 368.5mW. In this case, the DC
uses time-sharing to achieve power fairness. All power values
are equal and this is the best possible solution as any decrease
of a power value prompts an increase in another to satisfy the
achievable rate constraints. The only upper bound constraint
that holds with equality is the sum-rate constraint, and this
shows that the DC uses time-sharing between a number of

TABLE VII
DECODING ORDER COMBINATIONS AT THE GWS WITH TIME SHARING

Decoding order combination Time percentage
1→ 2→ 3→ 4→ 5→ 6→ 7→ 8 22.38%
7→ 6→ 5→ 4→ 3→ 2→ 1→ 8 3.11%
7→ 8→ 1→ 2→ 3→ 4→ 5→ 6 5.94%
6→ 7→ 8→ 1→ 2→ 3→ 4→ 5 15.63%
5→ 6→ 7→ 8→ 1→ 2→ 3→ 4 14.77%
4→ 5→ 6→ 7→ 8→ 1→ 2→ 3 20.93%
3→ 4→ 5→ 6→ 7→ 8→ 1→ 2 1.14%
2→ 3→ 4→ 5→ 6→ 7→ 8→ 1 16.37%

decoding order combinations. A system of eight equations
and eight variables is solved to find the exact percentage for
each decoding order that the DC uses. The decoding order
combinations can be chosen randomly but if one or more of
the variables is negative, this indicates that the sum-rate point
is not in the targeted area. In this case, the decoding order
associated with that variable has to be flipped. The decoding
order combinations at the DC are found to be as shown in
Table VII. Each decoding order combination is shown with
the associated percentage of the time. This will minimize the
maximum power used for transmission by the GWs.

ii. Large-size Buffer

To consider the large-size buffer scenario, an example of a
network of eight GWs is considered. The normalized stored
data rate in the buffer of each GW and the channel gain value
between the GWs and the DC is given below,

Q = [87.12 13.91 72.25 98.11 35.49 22.04 71.68 91.85],

G = [0.610 1.260 1.920 1.280 0.870 0.560 1.810 1.560],

where Q is in bps/Hz. Q is generated following the uniform
distribution between 30 and 100, i.e. ∈ [30, 100]. The problem
is solved using the fmincon algorithm in MATLAB, where
SQP is used. The maximum total power is set to be Pmax =
5W. From Q, the weights for each buffer are calculated to be

W = [0.177 0.028 0.147 0.199 0.072 0.045 0.146 0.187],

where
∑8
i=1Wi = 1. The individual powers for the GWs that

maximize the objective function are found to be,

P1 = 67.88mW P2 = 0W P3 = 1.694W
P4 = 692.8mW P5 = 0W P6 = 0W
P7 = 1.331W P8 = 1.214W,

and the total power, PTotal = 5W. The optimal decoding order
at the DC is found to be as follows:
GW7 → GW3 → GW1 → GW8 → GW4, while GW2, GW5
and GW6 are turned off. The normalized data rate for each of
the GWs is found to be,

R = [0.0087 0 1.33 10.146 0 0 0.5047 1.853],

In this case, GW2, which has the lowest channel gain and
lowest stored normalized data rate, is turned off. Moreover,
GW5 and GW6, which have relatively low channel gains and
stored normalized data rate, are turned off.
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VI. CONCLUSION

In this paper, the optimization of both stages of a geo-
seismic wireless acquisition system were considered. In the
first stage, GPs send their sampled data to a few GWs. In this
stage, the problem of maximizing the information theoretic
bounds on the sum-rate was formulated, and several meta-
heurisitic algorithms were proposed to solve it. The proposed
algorithms are based on concepts from swarm intelligence
and material science. These algorithms are angle-modulated
particle swarm optimization, discrete particle swarm optimiza-
tion, ant system, max-min ant system and simulated annealing.
Among them, the ant system algorithm proved to be the best
in solving the sum-rate maximization problem, considering
the performance and computational complexity. Furthermore,
it was shown that when the search space gets very large,
convergence speed for the ant colony optimization algorithms
can be increased by adapting the heuristic information accord-
ingly. In the second stage, which is the data delivery from
the GWs to the DC, two problems were explored based on
the length of the buffer at the GW. For small-size buffers, an
optimization problem to minimize the total power of the GWs
and another problem to minimize the maximum power of all
the GWs were proposed and solved. For large-size buffers,
a problem to maximize the weighted sum of the rates was
proposed. Convexity was discussed for the three problems,
and simulation results and discussion were provided.

APPENDIX 1

Consider the last constraint on the sum of rates in (4), i.e.∑N
i=1Qi ≤ log2

(
1 +

∑N
i=1 Pi|gi|2
N0

)
. It is obvious that for

minimum total power the constraint should hold with equality.
Let A =

∑N
i=1Qi, where A is a constant. Assume the channel

gains gi,∀i ∈ {1, ..., N} are ordered in a descending order,
and assume PN,min is the minimum possible value for PN ,
such that,

A = P1|g1|2 + ...+ PN−1|gN−1|2 + PN,min|gN−1|2 (15)

Now, subtract ∆1 from P1 and add ∆N to PN,min such that
the equality still holds, where,

A = (P1 −∆1)|g1|2 + ...+ PN−1|gN−1|2

+ (PN,min + ∆N )|gN |2 (16)

where ∆N |gN |2 = ∆1|g1|2. Therefore, ∆1 = ∆N
|gN |2
|g1|2 <

∆N . The total power in this case is,

PTotal = P1 −∆1 + ...+ PN−1 + PN,min + ∆N

= P1 + ...+ PN−1 + PN,min + (∆N −∆1)

> P1 + ...+ PN−1 + PN,min, (17)

since ∆N −∆1 is a positive term. Hence, the minimum value
for PN is used by decoding it last. By repeating the same
procedure for PN−1 up to P1, it is found that the decoding
order should follow the decreasing order of the channel gain
values.
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