Skip to main content
Log in

Q-GERT survivability assessment of LEO satellite constellation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Due to the complexity of space environment and the difficulty of satellite maintenance in outer space, survivability has become one of the most important problems of LEO satellite constellation. Network survivability is the ability of a system to complete communication missions in case of encountering accidents, failures or attacks. A survivable LEO satellite constellation can guarantee a certain mission success rate when some satellites fail, but the completed performance depends on the architecture designed, resources owned and route adopted by the satellite constellation. The existing satellite network survivability evaluation methods can not accurately describe the impact of constellation design parameters, limited resources and access algorithm on survivability. To overcome the above shortcomings, this paper proposes a new survivability assessment model with resource constraints. We exploit the queue graphical evaluation and review technology random network with feedback to characterize resource limitations and describe the dynamic random mission transfer process of LEO satellite constellation. Based on the time, jitter and consumed resources produced by different link arc activities when completing missions, combined with queuing birth and death technology, we derive the mission cost and network utility function, aiming at reflecting the completion ability of LEO satellite constellation for communication mission after facing fault or strike. The results show that increasing the orbit height does not significantly improve the network survivability; rerouting load balancing access strategy can better share the mission of failed satellite; LEO satellite constellation has weak survivability towards GCF; user retry after mission failure will aggravate delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

LEO:

Low earth orbit

MEO:

Medium earth orbit

GEO:

Geostationary earth orbit

UDL:

User data link

ISL:

Inter-satellite link

DTN:

Delay tolerance network

Q-GERT:

Queue graphical evaluation and review technique

RA:

Random attack

SIA:

Structure importance attack

GCF:

Geographically correlated failures

OA:

Orbital attack

S, U, \(\upsilon\) :

The set of LEO satellites, users and all nodes

s i, \(s_{i}^{\prime}\) :

Receiver and transmitter of Si

u i, \(u_{i}^{\prime}\) :

User receiving end and sending end of Ui

\(\lambda_{{a_{h} ,i,j}}\) :

Mission arrival rate between source user ui and destination user uj in the ah hour

\(\left( {\upsilon_{i} ,\upsilon_{j} } \right)\) :

Activity from node vi to node vj

\(W_{{usii^{\prime} }}\) :

Transfer function of up UDL activity \(\left( {u_{i} ,s_{i}^{\prime} } \right)\)

\(W_{{suii^{\prime} }}\) :

Transfer function of down UDL activity \(\left( {s_{i} ,u_{i}^{\prime} } \right)\)

\(W_{{ssij^{\prime} }}\) :

Transfer function of ISL between si and \(s_{j}^{\prime}\)

\(W_{{ssi^{\prime} i}}\) :

Transfer function of processing activity \(\left( {s_{i}^{\prime} ,s_{i} } \right)\)

\(W_{uii}\) :

Transfer functions of up UDL feedback

\(W_{suji}\) :

Transfer functions of down UDL feedback

\(W_{suii}\) :

Transfer function of ISL feedback

\(M_{i,j} \left( s \right)\) :

Cost moment generating function of \(\left( {\upsilon_{i} ,\upsilon_{j} } \right)\)

\(M_{{d_{i,j} }} \left( s \right)\) :

Delay moment generating function of \(\left( {\upsilon_{i} ,\upsilon_{j} } \right)\)

\(M_{{e_{i,j} }} \left( s \right)\) :

Energy moment generating function of \(\left( {\upsilon_{i} ,\upsilon_{j} } \right)\)

λ ui , λ sui, λ ri, λ ssi :

Packet arrival rate of satellite Si’s up UDL, down UDL, receiver si and ISL sender

m 1 ,m 2 :

Channel number of UDL and ISL

B s :

Buffer size of satellite

μ us , μ su, μ ss , μ sp :

Service rate of up UDL, down UDL, ISL and satellite processor

P us, P su, P sr, P ss , P sp, P o :

Power of up UDL, down UDL, receive ISL, send ISL and nominal operation

α :

Failure arrival rate of LEO satellite

References

  1. Favraud, R., Apostolaras, A., Nikaein, N., & Korakis, T. (2016). Toward moving public safety networks. IEEE Communications Magazine, 54(3), 14–20.

    Article  Google Scholar 

  2. Sikeridis, D., Tsiropoulou, E. E., Devetsikiotis, M., & Papavassiliou, S. (2018). Wireless powered Public Safety Io T: A UAV-assisted adaptive-learning approach towards energy efficiency. Journal of Network and Computer Applications, 123, 69–79.

    Article  Google Scholar 

  3. Favraud, R., Apostolaras, A., Nikaein, N., & Korakis, T. (2018). A socio-physical and mobility-aware coalition formation mechanism in public safety networks. EAI Endorsed Transactions Future Internet, 3(10), 1–9.

    Google Scholar 

  4. Qi, X. G., Ma, J. L., Wu, D., Liu, L. F., & Hu, S. L. (2016). A survey of routing techniques for satellite networks. Journal of Communications and Information Networks, 4(1), 66–85.

    Article  Google Scholar 

  5. Guo, Z., & Yan, Z. (2015). A weighted semi-distributed routing algorithm for LEO satellite networks. Journal of Network and Computer Applications, 58, 1–11.

    Article  Google Scholar 

  6. Ekici, E., Akyildiz, I. F., & Bender, M. D. (2001). A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE ACM Transcations on Networking, 9(2), 137–147.

    Article  Google Scholar 

  7. Kabadurmus, O., & Smith, A. E. (2018). Evaluating reliability/survivability of capacitated wireless networks. IEEE Transactions on Reliability, 67(1), 26–40.

    Article  Google Scholar 

  8. Lu, Y., Zhao, Y. J., Sun, F. C., & Li, H. B. (2013). A survivable routing protocol for two-layered LEO/MEO satellite networks. Wireless Networks, 20(5), 871–887.

    Article  Google Scholar 

  9. Ellison, R., & Linger, R. (1999). Survivable network system analysis: A case study. IEEE Software, 16(4), 70–77.

    Article  Google Scholar 

  10. Louca, S., Pitsillides, A., & Samaras, G. (1999). On network survivability algorithms based on trellis graph transformations. In Procedings of ISCC (pp. 235–243), Sharm EI Sheik, Red Sea, Egypt.

  11. Li, H. S., & Han, Z. (2011). Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue? IEEE Transactions on Wireless Communications, 10(5), 1656–1666.

    Article  Google Scholar 

  12. Glenn, A. B. (1985). Methodology for quantitatively evaluating satellite communication network survivability. IEEE Communications Magazine, 23(6), 28–33.

    Article  Google Scholar 

  13. Fraire, J. A., & Finochietto, J. M. (2015). Design challenges in contact plans for disruption-tolerant satellite networks. IEEE Communications Magazine, 53(5), 163–169.

    Article  Google Scholar 

  14. Wang, Y. P. (2018). Research on survivability of satellite network topologies. Dalian University of Technology.

  15. Frank, H., & Frisch, I. T. (1970). Analysis and design of survivable network. IEEE Transactions on Communications, 18(5), 501–519.

    Article  MathSciNet  Google Scholar 

  16. Albert, R., Jeong, H., & Barabasi, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.

    Article  Google Scholar 

  17. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letter, 87(19), 198701-1–198701-4.

    Article  Google Scholar 

  18. Huang, Y. J., Martínez, J. F., Díaz, V. H., & Sendra, J. (2014). A novel topology control approach to maintain the node degree in dynamic wireless sensor networks. Sensors, 14(3), 4672–5468.

    Article  Google Scholar 

  19. Wu, J., Barahona, M., Tan, Y. J., & Deng, H. Z. (2011). Spectral measure of structural robustness in complex networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6), 1244–1252.

    Article  Google Scholar 

  20. Nabian, M. A., & Meidani, H. (2018). Deep learning for accelerated reliability analysis of infrastructure networks. Computer-Aided Civil and Infrastructure Engineering, 33(6), 443–458.

    Article  Google Scholar 

  21. He, Y., & Zhao, H. L. (2007). Survivability performance evaluation for satellite communication network based on walker constellation. In Second international conference on space information technology, Proc. of SPIE (Vol. 6795, p. 67955C).

  22. Fu, X. W., Yao, H. Q., & Yang, Y. S. (2019). Modeling and analyzing the cascading invulnerability of wireless sensor networks. IEEE Sensors Journal, 19(11), 4349–4358.

    Article  Google Scholar 

  23. Yan, H. C., Zhang, Q. J., & Sun, Y. (2014). A novel routing scheme for LEO satellite networks based on link state routing. In Proceedings of the IEEE 17th international conference on computational science and engineering (pp. 876–880), Chengdu, China.

  24. Liu, L. F., Wu, D., & Lang, X. G. (2018). Research on data transmission and survivability technology of the GEO/LEO satellite network. Journal of Xidian University, 45(1), 1–5.

    Google Scholar 

  25. Wu, Y. P., Yang, Z. H., & Zhang, Q. Y. (2015). A novel DTN routing algorithm in the GEO-relaying satellite network. In Proceedings of MSN (pp. 264–269), Shenzhen, China.

  26. Barnhart, C. M., & Ziemer, R. E. (1991). Topological analysis of networks composed of multiple satellites. In Proceedings of PCCC (pp. 427–433), Washington, DC, USA.

  27. Liu, W., Sirisena, H., Pawlikowski, K., & McInnes, A. (2009). Utility of algebraic connectivity metric in topology design of survivable networks. In Proceedings of DRCN (pp. 131–138), Washington, DC, USA.

  28. Liu, X. X. (2017). Survivability-aware connectivity restoration for partitioned wireless sensor networks. IEEE Communications Letters, 21(11), 2444–2447.

    Article  Google Scholar 

  29. Yan, J. (2010). Research on the IP routing in LEO satellite constellation networks. Ph.D. dissertation, Tsinghua University, Beijing, China.

  30. Korcak, O., Alagoz, F., & Jamalipour, A. (2007). Priority-based adaptive routing in NGEO satellite networks. International Journal of Communication Systems, 20(3), 313–333.

    Article  Google Scholar 

  31. Organisation for Economic Cooperation and Development. (2015). OECD digital economy outlook 2015. Paris: OECD Publishing.

    Google Scholar 

  32. Long, F. (2014). Satellite network robust QoS-aware routing (pp. 75–92). Berlin: Springer.

    Book  Google Scholar 

  33. Liu, Z. L., Li, J. S., Wang, Y. R., Li, X., & Chen, S. Z. (2017). HGL: A hybrid global-local load balancing routing scheme for the Internet of Things through satellite networks. International Journal of Distributed Sensor Networks, 13(3), 1550147717692586.

    Article  Google Scholar 

  34. Singhal, C., & De, S. (2017). Resource allocation in next-generation broadband wireless access networks. Pennsylvania: IGI Global.

    Book  Google Scholar 

  35. Golkar, A., & i Cruz, I. L. (2015). The federated satellite systems paradigm: Concept and business case evaluation. Acta Astronautica, 111, 230–248.

    Article  Google Scholar 

  36. Zhou, D., Sheng, M., Liu, R. Z., Wang, Y., & Li, J. D. (2018). Channel-aware mission scheduling in broadband data relay satellite networks. IEEE Journal on Selected Areas in Communications, 36(5), 1052–1064.

    Article  Google Scholar 

  37. Feng, Y. C., Lv, C. L., Du, D. F., & Yang, G. (1987). Random network and its application (pp. 101–113). Beijing: Beijing Institute of Aeronautics Press.

    Google Scholar 

  38. Huang, S., Martel, C. U., & Mukherjee, B. (2011). Survivable multipath provisioning with differential delay constraint in telecom mesh networks. IEEE/ACM Transactions on Networking, 19(3), 657–669.

    Article  Google Scholar 

  39. Xiao, H. M., Zang, Z. C., & Cui, C. S. (2013). Operational research and its application (pp. 271–274). Beijing: Tsinghua University.

    Google Scholar 

  40. Han, X. F., Cao, X., Lloyd, E. L., & Shen, C. C. (2010). Fault-tolerantrelay node placement in heterogeneous wireless sensor networks. IEEE Transactions on Mobile computing, 9(5), 643–656.

    Article  Google Scholar 

  41. Joshi, Y. K., & Younis, M. (2016). Restoring connectivity in a resource constrained WSN. Journal of Network and Computer Applications, 66, 151–165.

    Article  Google Scholar 

  42. Huang, F. (2009). Research on communication access and handover strategy of LEO satellite. Ph.D. dissertation. University of Electronic Science and technology, Chengdu, China

  43. Tang, R. F., Yi, D. Y., Luo, Q., & Zhang, D. (2008). Fast simulation algorithm for visibility of LEO satellites. Journal of System Simulation, 20(18), 4850–4853.

    Google Scholar 

  44. Yang, Y., Xu, M. W., Wang, D., & Wang, Y. (2016). Towards energy-efficient routing in satellite networks. IEEE Journal on Selected Areas in Communications, 34(12), 3869–3886.

    Article  Google Scholar 

  45. Zhou, D., Sheng, M., Wang, X. J., Xu, C., Liu, R. Z., & Li, J. D. (2017). Mission aware contact plan design in resource-limited small satellite networks. IEEE Transactions on Communications, 65(6), 2451–2466.

    Article  Google Scholar 

  46. Nguyen, H. T., Choong, S. H., Han, Z., & Lee, S. (2013). Optimal pricing effect on equilibrium behaviors of delay-sensitive users in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2266–2579.

    Google Scholar 

  47. Zeng, Z. (2015). Dynamic spectrum access mechanisms for cognitive radio based on queueing theory and game theory. Ph.D. dissertation. Harbin Industrial University, Haerbin, China

  48. Yang, X. P., & Yin, C. H. (2010). Research of reliability indexes of complex network. Journal of Beijing Information Science and Technology University, 25(3), 92–96.

    Google Scholar 

  49. Pezora, J. E. (2013). Optimizing mission allocation in wireless sensor networks under geographically correlated failures. In Proceedings of ACM SenSys (pp. 57–63), New York, USA.

  50. Golkar, A., & Ignasi, L. I. C. (2015). The federated satellite systems paradigm: Concept and business case evaluation. Acta Astronomica, 111, 230–248.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 71671091, in part by the National Development and Reform Commission under Grant HighTech[2017]1069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Fang, Z. & Gao, S. Q-GERT survivability assessment of LEO satellite constellation. Wireless Netw 27, 249–268 (2021). https://doi.org/10.1007/s11276-020-02452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02452-7

Keywords

Navigation