Skip to main content

Advertisement

Log in

Energy-efficient resource allocation for multi-RAT networks under time average QoS constraint

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose an energy-efficient resource allocation algorithm for multiple radio access technologies (multi-RAT) networks, where the user equipments (UEs) transmit data over multiple radio interfaces for exploiting the complementary advantages of different RATs. In this scenario, the resource allocation is formulated as a stochastic energy efficiency (EE) maximization problem. More specifically, the time average quality of service constraint is considered to provide the flexible resource allocation over the time-varying fading channels. The virtual queue is introduced for each UE to deal with the time average transmission requirement. By adopting Lyapunov optimization technique and fractional programming theory, the non-concave EE maximization is converted into a mixed integer nonlinear optimization (MINO) problem. After that, the continuity relaxation and Lagrange dual methods are used to find the solution of the MINO problem. Then, we develop an EE-based dynamic joint subcarrier and power allocation algorithm, which does not require any prior knowledge of the channel state information. In addition, the performance bounds of the EE and virtual queue are provided. Our simulation results show that the performance of the proposed algorithm is better than other general algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.

    Article  Google Scholar 

  2. Merlin, S., Vaidya, N., & Zorzi, M. (2008). Resource allocation in multi-radio multi-channel multi-hop wireless networks. In Proceedings of IEEE INFOCOM (pp. 610–618).

  3. Liu, Z., Cheung, G., Chakareski, J., & Ji, Y. (2015). Multiple description coding and recovery of free viewpoint video for wireless multi-Path streaming. IEEE Journal on Selected Areas in Communications, 9(1), 151–164.

    Google Scholar 

  4. Sun, R., Wang, Y., Cheng, N., Lyu, L., Zhang, S., Zhou, H., et al. (2019). QoE-driven transmission-aware cache placement and cooperative beamforming design in cloud-RANs. IEEE Transactions on Vehicular Technology, 69(1), 636–650.

    Article  Google Scholar 

  5. Wu, W., Zhang, N., Cheng, N., Tang, Y., Aldubaikhy, K., & Shen, X. (2019). Beef up mmWave dense cellular networks with D2D-assisted cooperative edge caching. IEEE Transactions on Vehicular Technology, 68(4), 3890–3904.

    Article  Google Scholar 

  6. Zhao, N., Yu, F. R., Fan, L., Chen, Y., Tang, J., Nallanathan, A., et al. (2019). Caching unmanned aerial vehicle-enabled small-cell networks: Employing energy-efficient methods that store and retrieve popular content. IEEE Vehicular Technology Magazine, 14(1), 71–79.

    Article  Google Scholar 

  7. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2015). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  8. Wang, W., Tang, J., Zhao, N., Liu, X., Zhang, X. Y., Chen, Y., et al. (2020). Joint precoding optimization for secure SWIPT in UAV-aided NOMA networks. IEEE Transactions on Communications, 68(8), 5028–5040.

    Article  Google Scholar 

  9. GeSI, S. (2008). Enabling the low carbon economy in the information age. A Report by GeSI.

  10. Zhang, X., Zhou, S., Niu, Z., & Lin, X. (2013). An energy-efficient user scheduling scheme for multiuser MIMO systems with RF chain sleeping. In Proceedings of IEEE WCNC (pp. 169–174).

  11. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  12. Ju, H., Liang, B., Li, J., Long, Y., & Yang, X. (2014). Adaptive cross-network cross-layer design in heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 14(2), 655–669.

    Article  Google Scholar 

  13. He, C., Sheng, B., Zhu, P., You, X., & Li, G. Y. (2013). Energy-and spectral-efficiency tradeoff for distributed antenna systems with proportional fairness. IEEE Journal on Selected Areas in Communications, 31(5), 894–902.

    Article  Google Scholar 

  14. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Article  MathSciNet  Google Scholar 

  15. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Transactions on Wireless Communications, 11(10), 3618–3631.

    Article  Google Scholar 

  16. Xiong, C., Li, G. Y., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778.

    Article  Google Scholar 

  17. Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.

    Article  Google Scholar 

  18. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Transactions on Wireless Communications, 11(9), 3292–3304.

    Article  Google Scholar 

  19. Cheung, K. T. K., Yang, S., & Hanzo, L. (2013). Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: A fractional programming approach. IEEE Transactions on Communications, 61(7), 2746–2757.

    Article  Google Scholar 

  20. Lim, G., Xiong, C., Cimini, L. J., & Li, G. Y. (2014). Energy-efficient resource allocation for OFDMA-based multi-RAT networks. IEEE Transactions on Wireless Communications, 13(5), 2696–2705.

    Article  Google Scholar 

  21. Kim, S., Lee, B. G., & Park, D. (2014). Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Transactions on Wireless Communications, 13(4), 1862–1873.

    Article  Google Scholar 

  22. Yu, G., Jiang, Y., Xu, L., & Li, G. Y. (2015). Multi-objective energy-efficient resource allocation for multi-RAT heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(10), 2118–2127.

    Article  Google Scholar 

  23. Yun, S., Lee, J., Newaz, S. S., & Choi, J. K. (2015). Energy efficient pricing scheme for multi-homing in heterogeneous wireless access networks: A game theoretic model and its analysis. In: Proceedings of IEEE WCNC (pp. 1672–1677).

  24. Ismail, M., Gamage, A. T., Zhuang, W., & Shen, X. S. (2014). Energy efficient uplink resource allocation in a heterogeneous wireless medium. In Proceedings of IEEE ICC (pp. 5275–5280).

  25. Ismail, M., Abdrabou, A., & Zhuang, W. (2012). Cooperative decentralized resource allocation in heterogeneous wireless access medium. IEEE Transactions on Wireless Communications, 12(2), 714–724.

    Article  Google Scholar 

  26. Alsohaily, A., & Sousa, E. S. (2014). Dynamic spectrum management in multi-radio access technology (RAT) cellular systems. IEEE Communications Letters, 3(3), 249–252.

    Article  Google Scholar 

  27. Lakshminarayana, S., Assaad, M., & Debbah, M. (2015). Transmit power minimization in small cell networks under time average QoS constraints. IEEE Journal on Selected Areas in Communications, 33(10), 2087–2103.

    Article  Google Scholar 

  28. Li, J., Peng, M., Yu, Y., & Ding, Z. (2016). Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 65(12), 9873–9887.

    Article  Google Scholar 

  29. Xiang, H., Yu, Y., Zhao, Z., Li, Y., & Peng, M. (2015). Tradeoff between energy efficiency and queues delay in heterogeneous cloud radio access networks. In Proceedings of IEEE ICCW (pp. 2727–2731).

  30. Li, Y., Sheng, M., Zhang, Y., Wang, X., & Wen, J. (2014). Energy-efficient antenna selection and power allocation in downlink distributed antenna systems: A stochastic optimization approach. In Proceedings of IEEE ICC (pp. 4963–4968).

  31. Vu, Q.-D., Tran, L.-N., Juntti, M., & Hong, E.-K. (2015). Energy-efficient bandwidth and power allocation for multi-homing networks. IEEE Transactions on Signal Processing, 63(7), 1684–1699.

    Article  MathSciNet  Google Scholar 

  32. Jiang, J.. Peng, M., Zhang, K., & Li, L. (2013). Energy-efficient resource allocation in heterogeneous network with cross-tier interference constraint. In Proceedings of IEEE PIMRC workshops (pp. 168–172).

  33. Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. Synth. Lect. Commun., 3(1), 1–211.

    MATH  Google Scholar 

  34. Crouzeix, J.-P., & Ferland, J. A. (1991). Algorithms for generalized fractional programming. Math Program, 52(1–3), 191–207.

    Article  MathSciNet  Google Scholar 

  35. Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access, 4, 2738–2750.

    Article  Google Scholar 

  36. Huang, J., Subramanian, V. G., Agrawal, R., & Berry, R. (2009). Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks. IEEE Journal on Selected Areas in Communications, 27(2), 226–234.

    Article  Google Scholar 

  37. Hajiaghayi, M., Dong, M., & Liang, B. (2012). Jointly optimal channel and power assignment for dual-hop multi-channel multi-user relaying. IEEE Journal on Selected Areas in Communications, 30(9), 1806–1814.

    Article  Google Scholar 

  38. Li, Y., Sheng, M., Shi, Y., Ma, X., & Jiao, W. (2014). Energy efficiency and delay tradeoff for time-varying and interference-free wireless networks. IEEE Transactions on Wireless Communications, 13(11), 5921–5931.

    Article  Google Scholar 

  39. Song, L., Han, Z., Zhang, Z., & Jiao, B. (2011). Non-cooperative feedback-rate control game for channel state information in wireless networks. IEEE Journal on Selected Areas in Communications, 30(1), 188–197.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF China under Grant 61801365, 61671353, 61701365 and 61971327, in part by the China Postdoctoral Science Foundation under Grant 2018M643581, 2019TQ0210 and 2019M663015, in part by the Natural Science Foundation of Shaanxi Province under Grant 2019JQ-152 and 2020JQ-686, in part by the Open Research Fund of Science and Technology on Communication Networks Laboratory SXX18641X027, in part by Postdoctoral Foundation in Shaanxi Province of China, in part by Young Talent fund of University Association for Science and Technology in Shaanxi under grant 20200112 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Proof of Lemma 1

Proof

From Eq. (13), we obtain

$$\begin{aligned} L({\mathbf {Q}}(t+1))&-L({\mathbf {Q}}(t))\\&=\frac{1}{2}{\mathbf {Q}}(t+1)^{H}{\mathbf {Q}}(t+1) -\frac{1}{2}{\mathbf {Q}}(t)^{H}{\mathbf {Q}}(t)\\&=\frac{1}{2}(\max [{\mathbf {Q}}(t)-{\mathbf {R}}(t),0]+{\mathbf {R}}^{req})^{H}\\&\quad\times (\max [{\mathbf {Q}}(t)-{\mathbf {R}}(t),0]+{\mathbf {R}}^{req})\\&\quad-\frac{1}{2}{\mathbf {Q}}(t)^{H}{\mathbf {Q}}(t) \end{aligned}$$

where the dynamic queue state in Eq. (10) has been used.

If \(Q\ge 0\), \(f\ge 0\) and \(r\ge 0\), we have

$$\begin{aligned} (\max \{Q-r,0\}+f)^{2}\le Q^{2}+r^{2}+f^{2}+2Q(f-r), \end{aligned}$$

then

$$\begin{aligned} L({\mathbf {Q}}&(t+1))-L({\mathbf {Q}}(t))\nonumber \\&\le \frac{1}{2}({\mathbf {R}}^{req})^{H}{\mathbf {R}}^{req} +\frac{1}{2} {\mathbf {R}}(t)^{H} {\mathbf {R}}(t)\nonumber \\&\quad+\,({\mathbf {R}}^{req}-{\mathbf {R}}(t))^{H}{\mathbf {Q}}(t) \nonumber \\&\le B+({\mathbf {R}}^{req}(t)-{\mathbf {R}}(t))^{H}{\mathbf {Q}}(t). \end{aligned}$$
(37)

Because the value of \(\frac{1}{2}[({\mathbf {R}}^{req})^{H}{\mathbf {R}}^{req}+{\mathbf {R}}(t)^{H} {\mathbf {R}}(t) ]\) is finite, we take B as the upper bound of it.

Add \(-V\mathbb {E}[R_{tot}(t)|\mathbf {Q}(t)]\) to both sides of Eq. (32) and get an expectation, we have

$$\begin{aligned} &{\mathbb {E}}[\Delta ({\mathbf {Q}}(t))-V R_{tot}(t)|{\mathbf {Q}}(t)]\nonumber \\&\quad\le B-V {\mathbb {E}}[R_{tot}(t)|{\mathbf {Q}}(t)]\nonumber \\&\qquad+{\mathbb {E}}[({\mathbf {R}}^{req}-{\mathbf {R}}(t))^{H}{\mathbf {Q}}(t)|{\mathbf {Q}}(t)]. \end{aligned}$$
(38)

Dividing both sides by \({\mathbb {E}}[P_{tot}(t)|{\mathbf {Q}}(t)]\), we obtain

$$\begin{aligned}&\frac{{\mathbb {E}}[\Delta ({\mathbf {Q}}(t))-V R_{tot}(t)|{\mathbf {Q}}(t)]}{{\mathbb {E}} [P_{tot}(t)|{\mathbf {Q}}(t)]}\le \frac{B}{{\mathbb {E}}[P_{tot}(t)|{\mathbf {Q}}(t)]}\\&\quad - \frac{V R_{tot}(t)}{{\mathbb {E}}[P_{tot}(t)|{\mathbf {Q}}(t)]}\\&\quad+ \frac{\sum _{m\in {\mathcal {M}}}{\mathbb {E}} [Q_{m}(t)|(R_{m}^{QoS} -R_{m}(t))]}{{\mathbb {E}}[P_{tot}(t)|{\mathbf {Q}}(t)]} \end{aligned}$$

The proof of Lemma 1 has been completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, G., Wu, W., Yang, Q. et al. Energy-efficient resource allocation for multi-RAT networks under time average QoS constraint. Wireless Netw 27, 323–338 (2021). https://doi.org/10.1007/s11276-020-02456-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02456-3

Keywords

Navigation