Skip to main content

Advertisement

Log in

Energy and bandwidth-efficient channel access for local area machine-to-machine communication

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Ticket Election Multiple Access (TEMA) is introduced for local machine-to-machine communication that is energy and bandwidth-efficient. TEMA is based on distributed elections held among nodes to gain interference-free access to the channel in either unicast or broadcast mode. Non-transmitting nodes can infer whether or not they are the intended receiver of a transmission and act accordingly to save energy, without the need for particular traffic patterns or explicit future transmission schedules. TEMA is shown to be correct in the sense that the channel access schedules are collision-free at the intended receivers, and intended receivers are always in receiving state. An analytical model of the performance of the protocol is used to show that TEMA attains energy-efficiency and high channel utilization even under heavy traffic and high node density conditions. A simulation-based performance analysis validates the analytical results and shows that TEMA outperforms representatives of contention-based and interference-free protocols in terms of energy efficiency, network goodput, and channel access delay. More specifically, it reduces energy consumption to half of that of state-of-the-art distributed election-based protocols while providing up to 25% increase in goodput and up to 50% decrease in channel access delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet of Things Journal, 2(2), 175–186.

    Article  Google Scholar 

  2. Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., et al. (2016). Machine-to-machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83–105.

    Article  Google Scholar 

  3. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  4. Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  5. Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.

    Article  Google Scholar 

  6. Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K.-S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Article  Google Scholar 

  7. Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4), 349–359.

    Article  Google Scholar 

  8. Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54.

    Article  Google Scholar 

  9. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

    Article  Google Scholar 

  10. Hussain, F., Anpalagan, A., & Vannithamby, R. (2017). Medium access control techniques in M2M communication: Survey and critical review. Transactions on Emerging Telecommunications Technologies, 28(1), e2869.

    Article  Google Scholar 

  11. Islam, M., Taha, A.-E., & Akl, S. (2014). A survey of access management techniques in machine type communications. IEEE Communications Magazine, 52(4), 74–81.

    Article  Google Scholar 

  12. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  13. Chen, K.-C., & Lien, S.-Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Networks, 18, 3–23.

    Article  Google Scholar 

  14. Ye, Q., & Zhuang, W. (2017). Distributed and adaptive medium access control for Internet-of-Things-enabled mobile networks. IEEE Internet of Things Journal, 4(2), 446–460.

    Article  Google Scholar 

  15. Waldspurger, C. A., & Weihl, W. E. (1994). Lottery scheduling: Flexible proportional-share resource management. In Proceedings of the 1st USENIX conference on operating systems design and implementation, OSDI ’94. Berkeley, CA, USA: USENIX Association.

  16. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings (Vol. 3, pp. 1567–1576). IEEE.

  17. Kim, D., Jung, J., Koo, Y., & Yi, Y. (2020). Bird-MAC: Energy-efficient MAC for quasi-periodic IoT applications by avoiding early wake-up. IEEE Transactions on Mobile Computing, 19, 788–802.

    Article  Google Scholar 

  18. Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. J. (2003). Energy-efficient collision-free medium access control for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems, SenSys ’03, (New York, NY, USA) (pp. 181–192). ACM.

  19. Rajendran, V., Garcia-Luna-Aveces, J. J., & Obraczka, K. (2005). Energy-efficient, application-aware medium access for sensor networks. In IEEE international conference on mobile adhoc and sensor systems conference, 2005 (pp. 8–630).

  20. Ojo, M., Giordano, S., Portaluri, G., Adami, D., & Pagano, M. (2017). An energy efficient centralized scheduling scheme in tsch networks. In 2017 IEEE international conference on communications workshops (ICC workshops) (pp. 570–575). IEEE.

  21. Demir, A. K., & Bilgili, S. (2019). DIVA: A distributed divergecast scheduling algorithm for IEEE 802.15. 4e TSCH networks. Wireless Networks, 25(2), 625–635.

    Google Scholar 

  22. Bao, L., & Garcia-Luna-Aceves, J. (2003). Distributed dynamic channel access scheduling for ad hoc networks. Journal of Parallel and Distributed Computing, 63(1), 3–14.

    Article  Google Scholar 

  23. IEEE Standards Association. (2012). IEEE 802.11 2012.

  24. Gummalla, A. C. V., & Limb, J. O. (2000). Wireless medium access control protocols. IEEE Communications Surveys & Tutorials, 3(2), 2–15.

    Article  Google Scholar 

  25. Kumar, S., Raghavan, V. S., & Deng, J. (2006). Medium access control protocols for ad hoc wireless networks: A survey. Ad Hoc Networks, 4(3), 326–358.

    Article  Google Scholar 

  26. Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2013). The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(1), 101–120.

    Article  Google Scholar 

  27. Carrano, R. C., Passos, D., Magalhaes, L. C., & Albuquerque, C. V. (2014). Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 181–194.

    Article  Google Scholar 

  28. Abramson, N. (1970). THE ALOHA SYSTEM: Another alternative for computer communications. In Proceedings of the November 17–19, 1970, fall joint computer conference (pp. 281–285). ACM.

  29. Roberts, L. G. (1975). ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5(2), 28–42.

    Article  Google Scholar 

  30. Kleinrock, L., & Tobagi, F. (1975). Packet switching in radio channels: Part I-Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.

    Article  Google Scholar 

  31. Tobagi, F., & Kleinrock, L. (1975). Packet switching in radio channels: Part II-the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.

    Article  Google Scholar 

  32. Karn, P., et al., (1990). MACA-a new channel access method for packet radio. In ARRL/CRRL Amateur radio 9th computer networking conference (Vol. 140, pp. 134–140).

  33. Fullmer, C. L., & Garcia-Luna-Aceves, J. (1995). Floor acquisition multiple access (FAMA) for packet-radio networks. In ACM SIGCOMM computer communication review (Vol. 25, pp. 262–273). ACM

  34. Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.

    Article  Google Scholar 

  35. Calì, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking (ToN), 8(6), 785–799.

    Article  Google Scholar 

  36. Garcia-Luna-Aceves, J. (2017). Carrier-sense multiple access with collision avoidance and detection. In Proceedings of the 20th ACM international conference on modelling, analysis and simulation of wireless and mobile systems (pp. 53–61). ACM.

  37. Sklar, B. (2001). Digital communications: fundamentals and applications., Prentice Hall communications engineering and emerging technologies series Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  38. Garcia-Luna-Aceves, J., & Menchaca-Mendez, R. (2012). STORM: A framework for integrated routing, scheduling, and traffic management in ad hoc networks. IEEE Transactions on Mobile Computing, 11(8), 1345–1357.

    Article  Google Scholar 

  39. Lin, C., & Gerla, M. (1997). Asynchronous multimedia multihop wireless networks. In INFOCOM ’97. Sixteenth annual joint conference of the IEEE computer and communications societies. Driving the information revolution. Proceedings IEEE (Vol. 1, pp. 118–125).

  40. Zhu, C., & Corson, M. S. (2001). A five-phase reservation protocol (FPRP) for mobile ad hoc networks. Wireless Networks, 7(4), 371–384.

    Article  Google Scholar 

  41. Bao, L., & Garcia-Luna-Aceves, J. (2002). Hybrid channel access scheduling in ad hoc networks. In 10th IEEE international conference on network protocols, 2002. Proceedings (pp. 46–57).

  42. Basagni, S., Conti, M., Giordano, S., & Stojmenovic, I. (2004). Mobile ad hoc networking, ch. 11 (p. 313). Hoboken: Wiley.

    Book  Google Scholar 

  43. Roy, A., & Sarma, N. (2011). AEEMAC: Adaptive energy efficient MAC protocol for wireless sensor networks. In 2011 annual IEEE India conference (pp. 1–6).

  44. Lee, H., & Lee, H. (2016). Modeling and analysis of an energy-efficient MAC protocol for wireless sensor networks. In 2016 international conference on information networking (ICOIN) (pp. 402–405).

  45. Tavli, B., & Heinzelman, W. (2003). MH-TRACE: Multihop time reservation using adaptive control for energy efficiency. In Military communications conference, 2003. MILCOM ’03. 2003 IEEE (Vol. 2, pp. 1292–1297).

  46. Wu, H., Zhu, C., La, R. J., Liu, X., & Zhang, Y. (2013). FASA: Accelerated S-ALOHA using access history for event-driven M2M communications. IEEE/ACM Transactions on Networking, 21(6), 1904–1917.

    Article  Google Scholar 

  47. Liu, Y., Yuen, C., Chen, J., & Cao, X. (2013). A scalable hybrid MAC protocol for massive M2M networks. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 250–255). IEEE.

  48. Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet of Things Journal, 1(1), 99–111.

    Article  Google Scholar 

  49. Azquez-Gallego, F., Alonso-Zárate, J., Balboteo, I., & Alonso, L. (2013). DPCF-M: A medium access control protocol for dense machine-to-machine area networks with dynamic gateways. In IEEE 14th workshop on signal processing advances in wireless communications (SPAWC), 2013 (pp. 490–494). IEEE.

  50. Bakshi, A., Chen, L., Srinivasan, K., Koksal, C. E., & Eryilmaz, A. (2019). Emit: An efficient mac paradigm for the internet of things. IEEE/ACM Transactions on Networking, 27(4), 1572–1583.

    Article  Google Scholar 

  51. IEEE Standard for Local and metropolitan area networks–Part 15.4. (2012). Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (pp. 1–225).

  52. IEEE Standard for Local and metropolitan area networks–Part 15.4. (2011). Low-rate wireless personal area networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) (pp. 1–314).

  53. Kharb, S., & Singhrova, A. (2019). A survey on network formation and scheduling algorithms for time slotted channel hopping in industrial networks. Journal of Network and Computer Applications, 126, 59–87.

    Article  Google Scholar 

  54. Djukic, P., & Mohapatra, P. (2012). Soft-TDMAC: A software-based 802.11 overlay TDMA MAC with microsecond synchronization. IEEE Transactions on Mobile Computing, 11, 478–491.

    Article  Google Scholar 

  55. Omar, H. A., Zhuang, W., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736.

    Article  Google Scholar 

  56. Jiang, S., Rao, J., He, D., Ling, X., & Ko, C. C. (2002). A simple distributed PRMA for MANETs. IEEE Transactions on Vehicular Technology, 51(2), 293–305.

    Article  Google Scholar 

  57. Chang, T., Watteyne, T., Pister, K., & Wang, Q. (2015). Adaptive synchronization in multi-hop TSCH networks. Computer Networks, 76, 165–176.

    Article  Google Scholar 

  58. Elsts, A., Duquennoy, S., Fafoutis, X., Oikonomou, G., Piechocki, R., & Craddock, I. (2016). Microsecond-accuracy time synchronization using the IEEE 802.15. 4 tsch protocol. In 2016 IEEE 41st conference on local computer networks workshops (LCN Workshops) (pp. 156–164). IEEE.

  59. Gotzhein, R. (2020). Tick and time synchronization. In Real-time communication protocols for multi-hop ad-hoc networks (pp. 15–64). Cham: Springer. https://doi.org/10.1007/978-3-030-33319-5

    Chapter  Google Scholar 

  60. Riley, G. F., & Henderson, T. R. (2010). Modeling and tools for network simulation, ch. the ns-3 network simulator (pp. 15–34). Berlin, Heidelberg: Springer.

  61. Feeney, L., & Nilsson, M. (2001). Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications societies. Proceedings (Vol. 3, pp. 1548–1557). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Menchaca-Mendez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We derive an expression for the expected value of the size of the closed two-hop neighborhood (\(n_{2}\)) of a wireless node when nodes are randomly placed over a bounded bi-dimensional region R following a homogeneous Poisson Point Process (PPP) with intensity \(\lambda (x)=\lambda \ge 0\).

We further assume that the radio range of every node equals r, and hence, that the closed one-hop neighborhood of a node u located at position x is composed of the nodes in region \(D(x,r) \subset R\), where D(xr) denotes a disk of radio r with center at x. It is important to point out that this result holds for nodes located at a position x such that \(D(x,2r) \subset R\).

From the previous assumptions, the expected value of the closed one-hop neighborhood of u equals \(\lambda \pi r^2\).

On the other hand, a node v is a two-hop neighbor of u if it is in region \(D(x,2r) - D(x,r)\) and it has a neighbor in D(xr). By applying the thinning property of the PPPs, the number of two hop-neighbors of u can be described by a new PPP over region \(D(x,2r) - D(x,r) \subset R\), with intensity \(\lambda _\alpha (x') =\alpha (x') \lambda \), and where \(1-\alpha (x')\) is the probability that a node located at \(x' \in D(x,2r) - D(x,r)\) does not have a neighbor in D(xr).

Let l be the distance between x and \(x'\) with \(r < l\le 2r\), this probability equals

$$\begin{aligned} p_N(0)=\frac{(\lambda \int _D {\mathrm {d}}l)^0}{0!} e^{-\lambda \int _D {\mathrm {d}}l}=e^{-\lambda \int _D {\mathrm {d}}l} \end{aligned}$$

where \(D = D(x,r) \cap D(x',r)\).

The expected value of the new process can be computed using Eq. 23, where A(rl) is the area of region D that can be computed using Eq. 24.

$$\begin{aligned}&\int _r^{2r} \lambda (1-e^{-\lambda A(r,l)})2 \pi l\, {\mathrm {d}} l \end{aligned}$$
(23)
$$\begin{aligned}&A(r,l) = r^2 \left[ 2\arctan \left( \frac{\sqrt{4r^2-l^2}}{l}\right) -\frac{l\sqrt{4r^2-l^2}}{2r^2} \right] \end{aligned}$$
(24)

Lastly,

$$\begin{aligned} n_{2}=\lambda \pi r^2 +\int _r^{2r} \lambda (1-e^{-\lambda A(r,l)})2 \pi l \, {\mathrm {d}}l \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Escoto, J.J., Menchaca-Mendez, R., Menchaca-Mendez, R. et al. Energy and bandwidth-efficient channel access for local area machine-to-machine communication. Wireless Netw 27, 401–421 (2021). https://doi.org/10.1007/s11276-020-02463-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02463-4

Keywords

Navigation