Skip to main content

Advertisement

Log in

Deployment optimization of wireless mesh networks in wind turbine condition monitoring system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This study aims to propose a deployment optimization method based on IEEE 802.11 heterogeneous wireless mesh networks (WMNs) for the condition monitoring system (CMS) of wind turbines. This method can provide a flexible, low-cost, and easy-to-implement network framework for wind farms in harsh environments, thereby avoiding interference of the newly installed CMS on the communication network of the SCADA system. The K-medoids clustering algorithm transforms the continuous space location problem into the discrete space location problem. Moreover, the mesh client (MC) coverage and backbone network connectivity issues are considered to ensure that the generated candidate point set can meet the coverage and connectivity requirements without generating numerous redundant nodes. Firstly, according to the characteristics of the model, the K-medoids clustering algorithm is used to obtain a set of candidate points of mesh routers (MRs) that meet the coverage rate. Secondly, a reasonable connection algorithm is proposed according to the constraints, and the optimal deployment is selected from the candidate points. Thirdly, taking the number of hops from MR to MG and the priority of MC as the weight. The path planning with the least number of MRs and load balancing is obtained by constructing a minimum spanning tree (MST) based on the improved Kruskal algorithm. Finally, Multi-channel inter-frequency networking technology is adopted to reduce interference between co-channels and between adjacent channels. The result shows that the method proposed can minimize network operating costs, meet the capacity requirements of MC, and reduce link losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bangalore, P., Letzgus, S., Karlsson, D., & Patriksson, M. (2012). An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox. Wind Energy, 20(8), 1421–1438. https://doi.org/10.1002/we.2102.

    Article  Google Scholar 

  2. Traylor, C., DiPaola, M., Willis, D. J., & Inalpolat, M. (2020). A computational investigation of airfoil aeroacoustics for structural health monitoring of wind turbine blades. Wind Energy, 23(3), 795–809. https://doi.org/10.1002/we.2459.

    Article  Google Scholar 

  3. Hu, A., Xiang, L., & Zhu, L. (2020). An engineering condition indicator for condition monitoring of wind turbine bearings. Wind Energy, 23(2), 207–219. https://doi.org/10.1002/we.2423.

    Article  Google Scholar 

  4. Yang, D., Li, H., Hu, Y., Zhao, J., Xiao, H., & Lan, Y. (2016). Vibration condition monitoring system for wind turbine bearings based on noise suppression with multi-point data fusion. Renewable Energy, 92, 104–116. https://doi.org/10.1016/j.renene.2016.01.099.

    Article  Google Scholar 

  5. Ruiz-Cárcel, C., Jaramillo, V. H., Mba, D., Ottewill, J. R., & Cao, Y. (2016). Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions. Mechanical Systems and Signal Processing, 66–67, 699–714. https://doi.org/10.1016/j.ymssp.2015.05.018.

    Article  Google Scholar 

  6. Siegel, D., Zhao, W., Lapira, E., AbuAli, M., & Lee, J. (2014). A comparative study on vibration-based condition monitoring algorithms for wind turbine drive trains. Wind Energy, 17(5), 695–714. https://doi.org/10.1002/we.1585.

    Article  Google Scholar 

  7. Ghane, M., Rasekhi, N. A., Blanke, M., Gao, Z., & Moan, T. (2018). Condition monitoring of spar-type floating wind turbine drivetrain using statistical fault diagnosis. Wind Energy, 21(7), 575–589. https://doi.org/10.1002/we.2179.

    Article  Google Scholar 

  8. Kilic, G., & Unluturk, M. S. (2015). Testing of wind turbine towers using wireless sensor network and accelerometer. Renewable Energy, 75, 318–325. https://doi.org/10.1016/j.renene.2014.10.010.

    Article  Google Scholar 

  9. Ahuir-Torres, J. I., Bausch, N., Farrar, A., Webb, S., Simandjuntak, S., Nash, A., et al. (2019). Benchmarking parameters for remote electrochemical corrosion detection and monitoring of offshore wind turbine structures. Wind Energy, 22(6), 857–867. https://doi.org/10.1002/we.2324.

    Article  Google Scholar 

  10. Herrasti, Z., Val, I., Gabilondo, I., Berganzo, J., Arriola, A., & Martínez, F. (2016). Wireless sensor nodes for generic signal conditioning: Application to Structural Health Monitoring of wind turbines. Sensors and Actuators A-Physical, 247, 604–613.

    Article  Google Scholar 

  11. Alves, M. M., Pirmez, L., Rossetto, S., Delicato, F. C., Farias, C. M., Pires, P. F., et al. (2017). Damage prediction for wind turbines using wireless sensor and actuator networks. Journal of Network and Computer Applications, 80, 123–140. https://doi.org/10.1016/j.jnca.2016.12.027.

    Article  Google Scholar 

  12. Gholami, M., Taboun, M. S., & Brennan, R. W. (2019). An ad hoc distributed systems approach for industrial wireless sensor network management. Journal of Industrial Information Integration, 15, 239–246. https://doi.org/10.1016/j.jii.2018.05.001.

    Article  Google Scholar 

  13. Batista, N. C., Melicio, R., Mendes, V. M. F., & Figueiredo, J. (2014). Wireless monitoring of urban wind turbines by ZigBee protocol: support application software and sensor modules. Procedia Technology, 17, 461–470. https://doi.org/10.1016/j.protcy.2014.10.182.

    Article  Google Scholar 

  14. Álvaro, L. R., & Boris, B. (2020). Concurrent decentralized channel allocation and access point selection using multi-armed bandits in multi BSS WLANs. Computer Networks, 180, 107381. https://doi.org/10.1016/j.comnet.2020.107381.

    Article  Google Scholar 

  15. Fu, Z., Luo, Y., Gu, C., Li, F., & Yue, Y. (2019). Reliability analysis of condition monitoring network of wind turbine blade based on wireless sensor networks. IEEE Transactions on Sustainable Energy, 10(2), 549–557. https://doi.org/10.1109/TSTE.2018.2836664.

    Article  Google Scholar 

  16. Peng, Y., Qiao, W., Qu, L., & Wang, J. (2018). Sensor fault detection and isolation for a wireless sensor network-based remote wind turbine condition monitoring system. IEEE Transactions on Industry Applications, 54(2), 1072–1079. https://doi.org/10.1109/IAS.2017.8101845.

    Article  Google Scholar 

  17. Ouyang, F., Cheng, H., Lan, Y., Zhang, Y., Yin, X., Hu, J., et al. (2019). Automatic delivery and recovery system of wireless sensor networks (WSN) nodes based on UAV for agricultural applications. Computers and Electronics in Agriculture, 162, 31–43. https://doi.org/10.1016/j.compag.2019.03.025.

    Article  Google Scholar 

  18. Fadoul, M. M. (2020). Rate and coverage analysis in multi-tier heterogeneous network using stochastic geometry approach. Ad Hoc Networks, 98, 102038. https://doi.org/10.1016/j.adhoc.2019.102038.

    Article  Google Scholar 

  19. Kong, P. (2019). Cost efficient data aggregation point placement with interdependent communication and power networks in smart grid. IEEE Transactions on Smart Grid, 10(1), 74–83. https://doi.org/10.1109/TSG.2017.2731988.

    Article  Google Scholar 

  20. Aoun, B., Boutaba, R., Iraqi, Y., & Kenward, G. (2006). Gateway placement optimization in WMN with QoS constraints. IEEE Journal on Selected Areas in Communications, 24(11), 2127–36. https://doi.org/10.1109/JSAC.2006.881606.

    Article  Google Scholar 

  21. Seyedzadegan, M., Othman, M., Ali, B. M., & Subramaniam, S. (2013). Zero-Degree algorithm for Internet gateway placement in backbone wireless mesh networks. Journal of Network and Computer Applications, 36(6), 1705–1723. https://doi.org/10.1016/j.jnca.2013.02.031.

    Article  Google Scholar 

  22. Mezher, A. M., Cárdenas-Barrera, J., Rajendran, N., Meng, J., & Guerra, E. C. (2019). Optimized routers positions for large-scale of mesh networks based on clustering algorithms. Ad Hoc Networks, 93, 101901. https://doi.org/10.1016/j.adhoc.2019.101901.

    Article  Google Scholar 

  23. He, B., Xie, B., & Agrawal, D. P. (2008). Optimizing deployment of Internet gateway in wireless mesh networks. Computer Communications, 31(7), 1259–1275. https://doi.org/10.1016/j.comcom.2008.01.061.

    Article  Google Scholar 

  24. Xhafa, F., Sánche, C., Barolli, A., & Takizawa, M. (2015). Solving mesh router nodes placement problem in wireless mesh networks by Tabu search algorithm. Journal of Computer and System Sciences, 81(8), 1417–1428. https://doi.org/10.1016/j.jcss.2014.12.018.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, J., Cai, K., & Agrawal, D. R. (2009). A multi-rate based router placement scheme for wireless mesh networks. In: 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems (pp. 100-109). IEEE. https://doi.org/10.1109/MOBHOC.2009.5337037

  26. Lin, C. C. (2013). Dynamic router node placements in wireless mesh networks: a PSO approach with constriction coefficient and its convergence analysis. Information Sciences, 232, 294–308. https://doi.org/10.1016/j.ins.2012.12.023.

    Article  MathSciNet  MATH  Google Scholar 

  27. Roberto, M.-C., Rafael, R.-G., Camacho, J., & Pedro, G.-T. (2016). Optimal relay placement in multi-hop wireless networks. Ad Hoc Networks, 46(8), 23–36. https://doi.org/10.1016/j.adhoc.2016.03.007.

    Article  Google Scholar 

  28. Barolli, A., Oda, T., Ikeda, M., Barolli, L., Xhafa, F., & Loia, V. (2015). Node placement for wireless mesh networks: Analysis of WMN-GA system simulation results for different parameters and distributions. Journal of Computer and System Sciences, 81(8), 1496–1507. https://doi.org/10.1016/j.jcss.2014.12.024.

    Article  MathSciNet  MATH  Google Scholar 

  29. Singh, A. R., Devaraj, D., & Banu, R. N. (2019). Genetic algorithm-based optimisation of load-balanced routing for AMI with wireless mesh networks. Applied Soft Computing Journal, 74, 122–132. https://doi.org/10.1016/j.asoc.2018.10.003.

    Article  Google Scholar 

  30. Mohammed, A. Z., Nabil, S., Shigenobu, S., & Sabah, M. A. (2016). A centralized immune-Voronoi deployment algorithm for coverage maximization and energy conservation in mobile wireless sensor networks. Information Fusion, 30, 36–51. https://doi.org/10.1016/j.inffus.2015.11.005.

    Article  Google Scholar 

  31. Sun, X., Zhang, Y., Ren, X., & Chen, K. (2015). Optimization deployment of wireless sensor networks based on culture–ant colony algorithm. Applied Mathematics and Computation, 250, 58–70. https://doi.org/10.1016/j.amc.2014.10.091.

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, L., Peng, Y., & Xu, W. (2015). To converge more quickly and effectively—mean field annealing based optimal path selection in WMN. Information Sciences, 294, 216–226. https://doi.org/10.1016/j.ins.2014.10.001.

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J., Silva, B. N., Diyan, M., Cao, Z., & Han, K. (2018). A clustering based routing algorithm in iot aware wireless mesh networks. Sustainable Cities and Society, 40, 657–666. https://doi.org/10.1016/j.scs.2018.02.017.

    Article  Google Scholar 

  34. Yamarthy, M. R., Subramanyam, M. V., & Prasad, K. S. (2016). A multi-layer routing protocol for mobility management in wireless mesh networks. Procedia Computer Science, 89, 51–56. https://doi.org/10.1016/j.procs.2016.06.008.

    Article  Google Scholar 

  35. Wen, Y. F., Lien, T. H., & Lin, F. Y. S. (2018). Application association and load balancing to enhance energy in heterogeneous wireless networks. Computers and Electrical Engineering, 68, 348–365. https://doi.org/10.1016/j.compeleceng.2018.04.013.

    Article  Google Scholar 

  36. Barolli, A., Oda, T., Ikeda, M., Barolli, L., Xhafa, F., & Loia, V. (2015). Node placement for wireless mesh networks: Analysis of WMN-GA system simulation results for different parameters and distributions. Journal of Computer and System Sciences, 88(8), 1496–1507. https://doi.org/10.1016/j.jcss.2014.12.024.

    Article  MathSciNet  MATH  Google Scholar 

  37. Robert Singh, A., Devaraj, D., & Narmatha Banu, R. (2019). Genetic algorithm-based optimisation of load-balanced routing for AMI with wireless mesh networks. Applied Soft Computing Journal, 74, 122–132. https://doi.org/10.1016/j.asoc.2018.10.003.

    Article  Google Scholar 

  38. Kim, S. H., Kim, D. W., & Suh, Y. J. (2011). A cooperative channel assignment protocol for multi-channel multi-rate wireless mesh networks. Ad Hoc Networks., 9(5), 893–910. https://doi.org/10.1016/j.adhoc.2010.10.007.

    Article  Google Scholar 

  39. Zhang, W., He, J., Gao, G., Ren, L., & Shen, X. (2018). Routing and channel allocation union optimization in hybrid wireless mesh network. Journal of Jilin University., 48(1), 268–73. https://doi.org/10.13229/j.cnki.jdxbgxb20170035.

    Article  Google Scholar 

  40. Wang, B., Huan, X., Yang, L. T., & Mo, Y. (2015). Hybrid placement of internet gateways and rechargeable routers with guaranteed QoS for green wireless mesh networks. Mobile Networks and Applications, 20, 543–555. https://doi.org/10.1007/s11036-015-0607-2.

    Article  Google Scholar 

  41. Sommer, C., Joerer, S., & Dressler, F. (2012). On the applicability of two-ray path loss models for vehicular network simulation. In: IEEE Vehicular Networking Conference (pp. 64–69). https://doi.org/https://doi.org/10.1109/VNC.2012.6407446.

  42. Satiman, N., Fisal, N., Maa’rof, N. N. M. I., Zamani, A. I. A., Yusof, S. K. S., & Abbas, M. (2011). An efficient link aware route selection algorithm for WiMAX mobile multi-hop relay networks. International Journal of Computational Intelligence and Applications, 27(2), 48–53.

    Article  Google Scholar 

  43. So, A., & Liang, B. (2009). Optimal placement and channel assignment of relay stations in heterogeneous wireless mesh networks by modified bender’s decomposition. Ad Hoc Networks, 7, 118–135. https://doi.org/10.1016/j.adhoc.2007.12.003.

    Article  Google Scholar 

  44. Liu, C., Wu, Y., & Zhen, C. (2015). Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering. Proceedings of The Chinese Society for Electrical Engineering, 35(13), 3358–65. https://doi.org/10.13334/j.0258-8013.pcsee.2015.13.020.

    Article  Google Scholar 

  45. Deng, J., Guo, J., & Wang, Y. (2019). A Novel K-medoids clustering recommendation algorithm based on probability distribution for collaborative filtering. Knowl-Based Systems, 175, 96–106. https://doi.org/10.1016/j.knosys.2019.03.009.

    Article  Google Scholar 

  46. Lewis, R., Mello, C. A., & White, A. M. (2012). Tracking epileptogenesis progressions with layered fuzzy K-means and K-medoid clustering. Procedia Computer Science, 9, 432–438. https://doi.org/10.1016/j.procs.2012.04.046.

    Article  Google Scholar 

  47. Akila, I. S., & Venkatesan, R. (2018). An energy balanced geo-cluster head set based multi-hop routing for wireless sensor networks. Cluster Computing, 22(S4), 9465–9874. https://doi.org/10.1007/s10586-018-1724-z.

    Article  Google Scholar 

  48. Cheng, C., Pan, Y., & Wu, J. (2014). Routing algorithm with relay load balancing in wireless multi-hop networks. Journal Chinese Computer System, 35(4), 689–693.

    Google Scholar 

  49. Beheshtifard, Z., & Meybodi, M. R. (2018). An adaptive channel assignment in wireless mesh network: The learning automata approach. Computers and Electrical Engineering, 72, 79–91. https://doi.org/10.1016/j.compeleceng.2018.09.004.

    Article  Google Scholar 

  50. Wu, W., Yang, M., & Luo, J. (2014). A bandwidth-aware router placement scheme for wireless mesh networks. Chinese Journal of Computers, 37(2), 344–355.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51777131), the Science & Technology Development Plan of Jilin province -Major Science & Technology Bidding (No. 20180201004SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4

Table 4 Symbol comparison table

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, A., Xin, H. et al. Deployment optimization of wireless mesh networks in wind turbine condition monitoring system. Wireless Netw 27, 1459–1476 (2021). https://doi.org/10.1007/s11276-020-02522-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02522-w

Keywords

Navigation