Skip to main content

Advertisement

Log in

Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking neural networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Motivated by the energy-efficient computation of the brain, an energy-efficient wireless sensor network infrastructure is built for solving the pattern recognition task. In this work, spatiotemporal patterns originate from the wireless sensor nodes that use pulse-based networking schemes like pulse position-coded packet data unit and spiked time-division multiple access. Pulse-based networking schemes use spatiotemporal patterns to encode information rather than using traditional energy-expensive packets. These spatiotemporal patterns are learned through biologically plausible learning rule of Tempotron which is a neuronal binary classifier that uses a gradient-descent supervised learning rule to adjust the weights of synaptic inputs. A single Tempotron-trained spiking neuron is shown to read out information encoded in the spike timings of synaptic inputs. However, due to the simplicity of the single Tempotron classifier, its performance is inherently limited. In this work, we devise the multilayer spiking neuron training rules for event pattern classification in distributed wireless sensor networks. We also show that the proposed architecture improves classification accuracy by a considerable amount as compared to a single Tempotron model’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zellers, R., Bisk, Y., Farhadi, A., & Choi, Y. (2019). From recognition to cognition: Visual commonsense reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6720–6731).

  2. Rai, R., & Rai, P. (2019). Survey on energy-efficient routing protocols in wireless sensor networks using game theory. In Advances in communication, cloud, and big data. Springer (pp. 1–9).

  3. Yang, T.-J., Chen, Y.-H., Emer, J., & Sze, V. (2017). A method to estimate the energy consumption of deep neural networks. In 51st Asilomar conference on signals, systems, and computers. IEEE, 2017 (pp. 1916–1920).

  4. Zambrano, D., Nusselder, R., Scholte, H. S., & Bohte, S. (2017). Efficient computation in adaptive artificial spiking neural networks. arXiv preprint arXiv:1710.04838.

  5. Wang, W., Subagdja, B., Tan, A.-H., & Starzyk, J. A. (2012). Neural modeling of episodic memory: Encoding, retrieval, and forgetting. IEEE Transactions on Neural Networks and Learning Systems, 23(10), 1574–1586.

    Article  Google Scholar 

  6. Xin, J., & Embrechts, M. J. (2001). Supervised learning with spiking neural networks. In IJCNN’01. International joint conference on neural networks. Proceedings (Cat. No. 01CH37222), vol. 3. IEEE (pp. 1772–1777).

  7. Kasabov, N. K. (2014). Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks, 52, 62–76.

    Article  Google Scholar 

  8. Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197), 668–673.

    Article  Google Scholar 

  9. Wang, X., Lin, X., & Dang, X. (2020). Supervised learning in spiking neural networks: A review of algorithms and evaluations. Neural Networks.

  10. Gütig, R., & Sompolinsky, H. (2014). Tempotron learning. In Encyclopedia of computational neuroscience. Springer.

  11. Feng, D., Das, S., Hajiaghajani, F., Shi, Y., & Biswas, S. (2019). Pulse position coded medium access in energy-starved networks. Computer Communications, 148, 62–73.

    Article  Google Scholar 

  12. Feng, D., Shi, Y., Das, S., & Biswas, S. (2019). Energy-efficient and secure data networking using chaotic pulse position coded PDUS. IEEE Transactions on Green Communications and Networking, 4(2), 375–386.

    Article  Google Scholar 

  13. Das, S., & Biswas S. (2018) A scalable pulse protocol for structural health monitoring. In 2018 10th international conference on communication systems and networks (COMSNETS). IEEE (pp. 206–213).

  14. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019). Deep learning in spiking neural networks. Neural Networks, 111, 47–63.

    Article  Google Scholar 

  15. Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29(6), 141–142.

    Article  Google Scholar 

  16. Bohte, S. M., Kok, J. N., & La Poutré, J. A. (2000). Spikeprop: Backpropagation for networks of spiking neurons. ESANN, 48, 17–37.

    MATH  Google Scholar 

  17. Florian, R.V. (2008). Tempotron-like learning with resume. In International conference on artificial neural networks. Springer (pp. 368–375).

  18. Mohemmed, A., Schliebs, S., Matsuda, S., & Kasabov, N. (2012). Span: Spike pattern association neuron for learning spatio-temporal spike patterns. International Journal of Neural Systems, 22(04), 1250012.

    Article  Google Scholar 

  19. Banerjee, A. (2016). Learning precise spike train-to-spike train transformations in multilayer feedforward neuronal networks. Neural Computation, 28(5), 826–848.

    Article  MathSciNet  Google Scholar 

  20. Zenke, F., & Ganguli, S. (2018). Superspike: Supervised learning in multilayer spiking neural networks. Neural Computation, 30(6), 1514–1541.

    Article  MathSciNet  Google Scholar 

  21. Yu, Q., Tang, H., Hu, J., & Tan, K. C. (2017). Temporal learning in multilayer spiking neural networks through construction of causal connections. Neuromorphic Cognitive Systems (pp. 115–129). Springer.

  22. Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 331.

    Article  Google Scholar 

  23. Gehrig, D., Loquercio, A., Derpanis, K. G., & Scaramuzza, D. (2019). End-to-end learning of representations for asynchronous event-based data. In Proceedings of the IEEE international conference on computer vision (pp. 5633–5643).

  24. Victor, J. D., & Purpura, K. P. (2010). Spike metrics. In Analysis of parallel spike trains (pp. 129–156). Springer.

  25. Kasabov, N., & Capecci, E. (2015). Spiking neural network methodology for modelling, classification and understanding of eeg spatio-temporal data measuring cognitive processes. Information Sciences, 294, 565–575.

    Article  MathSciNet  Google Scholar 

  26. Gewaltig, M.-O., & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia, 2(4), 1430.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrukh Khan Kasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasi, S.K., Das, S. & Biswas, S. Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking neural networks. Wireless Netw 27, 2039–2054 (2021). https://doi.org/10.1007/s11276-021-02555-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02555-9

Keywords

Navigation