Skip to main content
Log in

High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We present a metamaterial superstrate based microstrip patch antenna with PIN diode switches applicable for wireless network applications. Metamaterials in the form of square array and circle array are used as superstrate based on microstrip antenna. The superstrate layers are also working as radome and provide strength to the overall structure and improve different antenna parameters like gain and bandwidth. The design results in the form of reflection coefficient (S11), gain, and bandwidth are compared for different metamaterial superstrate. The reconfiguration in frequency is also achieved by adding PIN diode switches in the metamaterial superstrate. The design results show multiband and high gain behavior for metamaterial superstrate designs. We have also analyzed the effect of using liquid metamaterial superstrate on microstrip antenna design. The design results of liquid metamaterial superstrate design are also compared with copper material superstrate design and simple microstrip patch antenna design. The proposed metamaterial superstrate microstrip antenna design with PIN diodes can become a building block for C/X/Ku-band wireless network devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jiang, D., & Cui, Y. (2019). Enhancing performance of random caching in large-scale wireless networks with multiple receive antennas. IEEE Transactions on Wireless Communications, 18(4), 2051–2065.

    Article  Google Scholar 

  2. Prabhu, T., & Pandian, S. C. (2020). Design and development of planar antenna array for mimo application. Wireless Networks, 1–8.

  3. Dhasarathan, V., Sharma, M., Kapil, M., Vashist, P. C., Patel, S. K., & Nguyen, T. K. (2020). Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications. Wireless Networks, 1–11.

  4. Singh, A. K., Abegaonkar, M. P., & Koul, S. K. (2017). High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas and Wireless Propagation Letters, 16, 2388–2391.

    Article  Google Scholar 

  5. Patel, S. K., & Kosta, Y. P. (2012). Meandered multiband metamaterial square microstrip patch antenna design. Waves in Random and Complex Media, 22(4), 475–487.

    Article  Google Scholar 

  6. Cui, T. J., Smith, D. R., & Liu, R. (2010). Metamaterials (p. 1). Spring Street, New York: Springer.

  7. Attia, H., Yousefi, L., Bait-Suwailam, M. M., Boybay, M. S., & Ramahi, O. M. (2009). Enhanced-gain microstrip antenna using engineered magnetic superstrates. IEEE Antennas and Wireless Propagation Letters, 8, 1198–1201.

    Article  Google Scholar 

  8. Patel, S. K., & Kosta, Y. P. (2014). Metamaterial superstrate-loaded meandered microstrip-based radiating structure for bandwidth enhancement. Journal of Modern Optics, 61(11), 923–930.

    Article  Google Scholar 

  9. Mark, R., Singh, H. V., Mandal, K., & Das, S. (2020). Mutual coupling reduction using near-zero ε and μ metamaterial-based superstrate for an MIMO application. IET Microwaves, Antennas & Propagation, 14(6), 479–484.

    Article  Google Scholar 

  10. Gangwar, D., Das, S., & Yadava, R. L. (2017). Gain enhancement of microstrip patch antenna loaded with split ring resonator based relative permeability near zero as superstrate. Wireless Personal Communications, 96(2), 2389–2399.

    Article  Google Scholar 

  11. Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2017). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102.

    Article  Google Scholar 

  12. Majid, H. A., Abd Rahim, M. K., & Masri, T. (2009). Microstrip antenna’s gain enhancement using left-handed metamaterial structure. Progress in Electromagnetics Research, 8, 235–247.

    Article  Google Scholar 

  13. Sharma, K., Karmakar, A., Sharma, M., Chauhan, A., Bansal, S., Hooda, M., ... & Singh, A. K. (2019). Reconfigurable dual notch band antenna on Si-substrate integrated with RF MEMS SP4T switch for GPS, 3G, 4G, bluetooth, UWB and close range radar applications. AEU-International Journal of Electronics and Communications, 110, 152873.

  14. Patel, S. K., Shah, K. H., & Kosta, Y. P. (2019). Frequency-reconfigurable and high-gain metamaterial microstrip-radiating structure. Waves in Random and Complex Media, 29(3), 523–539.

    Article  Google Scholar 

  15. Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2017). Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators. IET Microwaves, Antennas & Propagation, 12(3), 390–394.

    Article  Google Scholar 

  16. Lin, W., & Wong, H. (2017). Wideband circular-polarization reconfigurable antenna with L-shaped feeding probes. IEEE Antennas and Wireless Propagation Letters, 16, 2114–2117.

    Article  Google Scholar 

  17. Zhang, P., Liu, S., Chen, R., & Huang, X. (2016). A reconfigurable microstrip patch antenna with frequency and circular polarization diversities. Chinese Journal of Electronics, 25(2), 379–383.

    Article  Google Scholar 

  18. Ali, T., & Biradar, R. C. (2017). A compact hexagonal slot dual band frequency reconfigurable antenna for WLAN applications. Microwave and Optical Technology Letters, 59(4), 958–964.

    Article  Google Scholar 

  19. Zhuang, K., Geng, J., Wang, K., Zhou, H., Liang, Y., Liang, X., ... & Ma, W. (2019). Pattern reconfigurable antenna applying spoof surface plasmon polaritons for wide angle beam steering. IEEE Access, 7, 15444–15451.

  20. Sharma, S., & Tripathi, C. C. (2017). Wideband to concurrent tri-band frequency reconfigurable microstrip patch antenna for wireless communication. International Journal of Microwave and Wireless Technologies, 9(4), 915–922.

    Article  Google Scholar 

  21. Guo, C., Deng, L., Dong, J., Yi, T., Liao, C., Huang, S., & Luo, H. (2020). Variode Enabled frequency-reconfigurable microstrip patch antenna with operation band covering S and C bands. Progress In Electromagnetics Research, 88, 159–167.

    Article  Google Scholar 

  22. Bharathi, A., Lakshminarayana, M., & Rao, P. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU-International Journal of Electronics and Communications, 78, 15–23.

    Article  Google Scholar 

  23. Patel, S. K., & Argyropoulos, C. (2016). Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators. Journal of ElEctromagnEtic WavEs and applications, 30(7), 945–961.

    Article  Google Scholar 

  24. Li, Z., Ahmed, E., Eltawil, A. M., & Cetiner, B. A. (2014). A beam-steering reconfigurable antenna for WLAN applications. IEEE Transactions on Antennas and Propagation, 63(1), 24–32.

    Article  MathSciNet  Google Scholar 

  25. Saeed, S. M., Balanis, C. A., & Birtcher, C. R. (2016). Inkjet-printed flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices. IEEE Antennas and Wireless Propagation Letters, 15, 1979–1982.

    Article  Google Scholar 

  26. Patel, S. K., & Kosta, Y. (2018). Liquid metamaterial based microstrip antenna. Microwave and Optical Technology Letters, 60(2), 318–322.

    Article  Google Scholar 

  27. Haynes, W. M. (2014). CRC handbook of chemistry and physics. CRC press.

  28. Patel, S. K., Lavadiya, S., Kosta, Y. P., Kosta, M., Nguyen, T. K., & Dhasarathan, V. (2020). Numerical investigation of liquid metamaterial-based superstrate microstrip radiating structure. PhyB, 585, 412095.

    Google Scholar 

  29. Suvariya, J., & Lavadiya, S. (2018). An investigation on recent trends in metamaterial types and its applications. i-Manager's Journal on Material Science, 5(4), 55.

  30. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical review letters, 84(18), 4184.

    Article  Google Scholar 

  31. Patel, S. K., & Kosta, Y. (2013). Investigation on radiation improvement of corner truncated triband square microstrip patch antenna with double negative material. Journal of Electromagnetic Waves and Applications, 27(7), 819–833.

    Article  Google Scholar 

  32. Nazir, I., Rana, I. E., Mir, N. U. A., & Afreen, K. (2016). Design and analysis of a frequency reconfigurable microstrip patch antenna switching between four frequency bands. Progress In Electromagnetics Research, 68, 179–191.

    Article  Google Scholar 

  33. Vettikalladi, H., Olivier, L., & Mohammed, H. (2009). High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antennas and Wireless Propagation Letters, 8, 1422–1425.

    Article  Google Scholar 

  34. Mansoul, A., & Kimouche, H. (2013). A simple frequency reconfigurable microstrip patch antenna for wireless communication. In 2013 8th International workshop on systems, signal processing and their applications (WoSSPA) (pp. 306–309). New York: IEEE.

  35. Bhattacharya, A., & Jyoti, R. (2015, July). Frequency reconfigurable patch antenna using PIN diode at X-band. In 2015 IEEE 2nd international conference on recent trends in information systems (ReTIS) (pp. 81–86). New York: IEEE.

  36. Medeiros, C. R., et al. (2007, May). Evaluation of modelling accuracy of reconfigurable patch antennas. In Proc. of conftele'2007-6th conference on telecommunications.

  37. Yadav, A. M., Panagamuwa, C. J., & Seager, R. D. (2010, November). Investigating the effects of control lines on a frequency reconfigurable patch antenna. In 2010 Loughborough Antennas & Propagation Conference (pp. 605-608). IEEE.

  38. Chiu, Chi-Yuk., et al. (2012). Frequency-reconfigurable pixel slot antenna. IEEE Transactions on Antennas and Propagation, 60(10), 4921–4924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhit K. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K.Sumathi, Lavadiya, S., Yin, P. et al. High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wireless Netw 27, 2131–2146 (2021). https://doi.org/10.1007/s11276-021-02567-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02567-5

Keywords

Navigation