Skip to main content
Log in

Computational intelligence techniques for automatic detection of Wi-Fi attacks in wireless IoT networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

These days, number of smart products based on Internet-of-Things (IoT) has been increased. These products are unified via various wireless technologies like, Bluetooth, Z-wave, Wi-Fi, Zigbee, etc. While the need on the wireless networks has improved, the assaults against them throughout the time have expanded on top. In order to identify these assaults, an intrusion detection system (IDS) with a prominent precision and low identification time is required. In this work, a machine learning (ML) based wireless intrusion detection system (WIDS) for wireless networks to effectively identify assaults against them has been proposed. A ML prototype has been implemented to categorize the wireless network records into ordinary or one of the particular assault categories. The operation of an IDS is extensively enhanced when the attributes are more discriminative and delegate. Different attribute selection methods have been investigated to identify the best set of attributes for the WIDS. The proposed model is evaluated on aegean wireless intrusion dataset using various parameters like attack detection rate, detection time, precision, F-measure, etc. The experimental evaluation is carried out in the tools like, Weka, Rstudio and Anaconda Navigator Python. Finally, the experimental result shows the best performing ML algorithm with best set of reduced attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ray, S., Jin, Y., & Raychowdhury, A. (2016). The changing computing paradigm with internet of things: A tutorial introduction. IEEE Design and Test, 33(2), 76–96. https://doi.org/10.1109/MDAT.2016.2526612

    Article  Google Scholar 

  2. Diechmann, J., Heineke, K., Reinbacher, T., & Wee, D. (2018). The Internet of Things: How to capture the value of IoT. Technical Report, 1–124. https://www.mckinsey.com/featuredinsights/internet-of-things/our-insights/the-internet-of-things-how-to-capture-the-value-of-iot#. Accessed 13 January 2021.

  3. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  4. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of Things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016

    Article  Google Scholar 

  5. Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities and reference architecture for E-commerce. In International conference on green computing and Internet of Things (ICGCIoT) (pp. 1577–1581). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICGCIoT.2015.7380718.

  6. Weber, R. H. (2010). Internet of things: New security and privacy challenges. Computer Law and Security Review, 26(1), 23–30. https://doi.org/10.1016/j.clsr.2009.11.008

    Article  Google Scholar 

  7. Kai, Z., & Lina, G. (2013). A survey on the Internet of Things security. In Ninth international conference on computational intelligence and security (663–667). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/CIS.2013.145.

  8. Ioannis, A., Chrysostomos, C., & George, H. (2015). Internet of Things: Security vulnerabilities and challenges. In IEEE symposium on computers and communication (ISCC) (pp. 180–187). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ISCC.2015.7405513.

  9. Riccardo, B., Nicola, B., Vishwas, L., Alexis, O., & Alexandru, S. (2012). Secure communication for smart IoT objects: Protocol stacks, use cases and practical examples. In IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–7). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/WoWMoM.2012.6263790.

  10. Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y. (2017). Detection of unauthorized IoT devices using machine learning techniques. CoRR https://arxiv.org/abs/1709.04647.

  11. Moskvitch, K. (2017). Securing IoT: In your smart home and your connected enterprise. Engineering Technology, 12(3), 40–42. https://doi.org/10.1049/et.2017.0303

    Article  Google Scholar 

  12. Sivanathan, A., Sherratt, D., Gharakheili, H., Sivaraman, V., & Vishwanath, A. (2016). Low-cost flow-based security solutions for smart-home IoT devices. In IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ANTS.2016.7947781.

  13. Kolias, C., Stavrou, A., Voas, J., Bojanova, I., & Kuhn, R. (2016). Learning Internet-of-Things security “hands-on.” IEEE Security and Privacy, 14(1), 37–46. https://doi.org/10.1109/MSP.2016.4

    Article  Google Scholar 

  14. Moustafa, N., Choo, K. K. R., Radwan, I., & Camtepe, S. (2019). Outlier Dirichlet mixture mechanism: Adversarial statistical learning for anomaly detection in the fog. IEEE Transactions on Information Forensics and Security, 14(8), 1975–1987. https://doi.org/10.1109/TIFS.2018.2890808

    Article  Google Scholar 

  15. Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and other botnets. Computer, 50(7), 80–84. https://doi.org/10.1109/MC.2017.201

    Article  Google Scholar 

  16. Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. (2018). Machine learning for Internet of Things data analysis: Survey. Journal of Digital Communications and Networks, 1, 1–56. https://doi.org/10.1016/j.dcan.2017.10.002

    Article  Google Scholar 

  17. AWID. (2014). http://icsdweb.aegean.gr/awid/features.html Accessed 25 February 2018.

  18. Benzarti, S., Triki, B., & Korbaa, O. (2017). A survey on attacks in Internet of Things based networks. In 2017 International conference on engineering and MIS (ICEMIS) (pp. 1–7). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICEMIS.2017.8273006.

  19. Hussain, R., & Oh, H. (2014). On secure and privacy-aware sybil attack detection in vehicular communications. Wireless Personal Communications, 77, 2649–2673. https://doi.org/10.1007/s11277-014-1659-5

    Article  Google Scholar 

  20. Dong, W., & Liu, X. (2015). Robust and secure time-synchronization against sybil attacks for sensor networks. IEEE Transactions on Industrial Informatics, 11, 1482–1491. https://doi.org/10.1109/TII.2015.2495147

    Article  Google Scholar 

  21. Aslam, M., Ye, D., Hanif, M., & Asad, M. (2020). Machine learning based SDN-enabled distributed denial-of-services attacks detection and mitigation system for Internet of Things. In X. Chen, H. Yan, Q. Yan, & X. Zhang (Eds.), Machine learning for cyber security. ML4CS 2020. Lecture notes in computer science 12486. Cham: Springer. https://doi.org/10.1007/978-3-030-62223-7_16

    Chapter  Google Scholar 

  22. Buddhika, T., & Pallickara, S. (2016). Neptune: Real time stream processing for internet of things and sensing environments. In IEEE International parallel and distributed processing symposium (IPDPS) (pp. 1143–1152). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/IPDPS.2016.43.

  23. Hari, P. B., & Singh, S. N. (2019). Security attacks at MAC and network layer in wireless sensor networks. Journal of Advanced Research in Dynamical and Control Systems, 11, 82–89. https://doi.org/10.5373/JARDCS/V11I12/20193215

    Article  Google Scholar 

  24. NSL-KDD. (2009). http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html. Accessed 31 January 2018.

  25. KDD Cup 1999 Data. (1999). https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed 30 January 2018.

  26. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. In IEEE international conference on computational intelligence for security and defense applications (CISDA’09) (pp. 53–58). IEEE Press, USA. https://doi.org/https://doi.org/10.1109/CISDA.2009.5356528.

  27. Sabhnani, M., & Serpen, G. (2004). Why machine learning algorithms fail in misuse detection on KDD intrusion detection data set. Intelligent Data Analysis, 8(4), 403–415. https://doi.org/10.3233/IDA-2004-8406

    Article  Google Scholar 

  28. Liu, Y., Tian, D.-X., & Wei, D. (2006). A wireless intrusion detection method based on neural network. In Proceedings of the second IASTED international conference advances in computer science and technology (pp. 207–211), ACTA Press, USA.

  29. Khoshgoftaar, T., Nath, S. V., Zhong, S., & Seliya, N. (2005). Intrusion detection in wireless networks using clustering techniques with expert analysis. In Fourth international conference on machine learning and applications (ICMLA'05) (pp. 6). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICMLA.2005.43.

  30. Zhong, S., Khoshgoftaar, T. M., & Nath, S. V. (2005). A clustering approach to wireless network intrusion detection. In IEEE international conference tools with artificial intelligence (ICTAI) (pp. 196). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICTAI.2005.5

  31. Boukerche, A., Machado, R. B., Juca, K. R. L., Sobral, J. B. M., & Notare, M. S. M. A. (2007). An agent based and biological inspired real-time intrusion detection and security model for computer network operations. Computer Communications, 30(13), 2649–2660. https://doi.org/10.1016/j.comcom.2007.03.008

    Article  Google Scholar 

  32. Boukerche, A., Juc, K. R. L., Sobral, J. B., & Notare, M. S. M. A. (2004). An artificial immune based intrusion detection model for computer and telecommunication systems. Parallel Computing, 30(5), 629–646. https://doi.org/10.1016/j.parco.2003.12.008

    Article  Google Scholar 

  33. Boukerche, A., & Notare, M. S. M. A. (2002). Behavior-based intrusion detection in mobile phone systems. Journal of Parallel and Distributed Computing, 62(9), 1476–1490. https://doi.org/10.1006/jpdc.2002.1857

    Article  MATH  Google Scholar 

  34. Amiri, F., Yousefi, M. M. R., Lucas, C., Shakery, A., & Yazdani, N. (2011). Mutual information-based feature selection for intrusion detection systems. Journal of Network and Computer Applications, 34(4), 1184–1199. https://doi.org/10.1016/j.jnca.2011.01.002

    Article  Google Scholar 

  35. El-Khatib, K. (2010). Impact of feature reduction on the efficiency of wireless intrusion detection systems. IEEE Transactions on Parallel and Distributed Systems, 21(8), 1143–1149. https://doi.org/10.1109/TPDS.2009.142

    Article  Google Scholar 

  36. Schaffernicht, E., & Gross, H. M. (2011). weighted mutual information for feature selection. In T. Honkela, W. Duch, M. Girolami, & S. Kaski (Eds.), Artificial neural networks and machine learning—ICANN 2011. ICANN 2011. Lecture notes in computer science, 6792. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-21738-8_24

    Chapter  Google Scholar 

  37. Kasliwal, B., Bhatia, S., Saini, S., Thaseen, I. S., & Kumar, C. (2014). A hybrid anomaly detection model using G-LDA. In U. Batra & A. Sujata (Eds.), IEEE International advance computing conference (IACC) (pp. 288–293). USA: IEEE Computer Society. https://doi.org/10.1109/IAdCC.2014.6779336

    Chapter  Google Scholar 

  38. Sindhu, S. S. S., Geetha, S., & Kannan, A. (2012). Decision tree based light weight intrusion detection using a wrapper approach. Expert Systems with Applications, 39(1), 129–141. https://doi.org/10.1016/j.eswa.2011.06.013

    Article  Google Scholar 

  39. Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. In Proceedings of the 43rd annual southeast regional conference (ACM-SE 43). (vol. 2, pp. 136–141). New York, NY, USA: Association for Computing Machinery. https://doi.org/https://doi.org/10.1145/1167253.1167288.

  40. Sung, A. H., & Mukkamala, S. (2004). The feature selection and intrusion detection problems. In M. J. Maher (Ed.), Advances in computer science—ASIAN 2004. Higher-level decision making. ASIAN 2004. Lecture notes in computer science. Berlin, Heidelberg: Springer.

    Google Scholar 

  41. Zhou, Y., Cheng, G., Jiang, S., & Dai, M. (2020). Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer Networks, 174, 1–21. https://doi.org/10.1016/j.comnet.2020.107247

    Article  Google Scholar 

  42. Farahani, G. (2020). Feature selection based on cross-correlation for the intrusion detection system. Security and Communication Networks. https://doi.org/10.1155/2020/8875404

    Article  Google Scholar 

  43. Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2006). Machine learning: A review of classification techniques. Artificial Intelligence Review, 26(3), 159–190. https://doi.org/10.1007/s10462-007-9052-3

    Article  Google Scholar 

  44. Entezari-Maleki, R., Rezaei, A., & Minaei-Bidgoli, B. (2009). Comparison of classification methods based on the type of attributes and sample size. Journal of Convergence Information Technology, 4(3), 94–102.

    Article  Google Scholar 

  45. Bakar, A. A., Othman, Z. A., Hamdan, A. R., Yusof, R., & Ismail, R. (2008). An agent-based rough classifier for data mining. In Eighth international conference on intelligent systems design and applications (ISDA '08) (vol.1, pp. 145–151). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ISDA.2008.29.

  46. Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of intrusion detection systems. Computers and Security, 24(4), 295–307. https://doi.org/10.1016/j.cose.2004.09.008

    Article  Google Scholar 

  47. Li, Z., Li, Y., & Xu, L. (2011). Anomaly intrusion detection method based on k-means clustering algorithm with particle swarm optimization. In International conference of information technology, computer engineering and management sciences (pp. 157–161). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICM.2011.184.

  48. Teng, S., Du, H., Wu, N., Zhang, W., & Su, J. (2010). Acooperative network intrusion detection based on fuzzy SVMs. Journal of Networks, 5(4), 475–483. https://doi.org/10.4304/jnw.5.4.475-483

    Article  Google Scholar 

  49. Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers and Operations Research, 32(10), 2617–2634. https://doi.org/10.1016/j.cor.2004.03.019

    Article  MATH  Google Scholar 

  50. Li, K. L., Huang, H. K., Tian, S. F., & Xu, W. (2003). Improving one-class SVM for anomaly detection. In Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE Cat. No.03EX693) (vol. 5, pp. 3077–3081). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICMLC.2003.1260106.

  51. Ambwani, T. (2003). Multi class support vector machine implementation to intrusion detection. In Proceedings of the international joint conference on neural networks (vol. 3, pp. 2300–2305). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/IJCNN.2003.1223770.

  52. Wang, J., Hong, X., Ren, R., & Li, T. (2009). A real-time intrusion detection system based on PSO-SVM. In Proceedings of the international workshop on information security and application (pp. 319–321).

  53. Saxena, H., & Richariya, V. (2014). Intrusion detection in KDD99 dataset using SVM-PSO and feature reduction with information gain. International Journal of Computer Applications, 98(6), 25–29. https://doi.org/10.5120/17188-7369

    Article  Google Scholar 

  54. Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research, 4(3), 808–812.

    Google Scholar 

  55. Huang, C.-L., & Dun, J.-F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391. https://doi.org/10.1016/j.asoc.2007.10.007

    Article  Google Scholar 

  56. Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2016). Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE Communications Surveys and Tutorials, 18(1), 184–208. https://doi.org/10.1109/COMST.2015.2402161

    Article  Google Scholar 

  57. Abdulhammed, R., Faezipour, M., Abuzneid, A. A., & Alessa, A. (2018). Effective features selection and machine learning classifiers for improved wireless intrusion detection. In International symposium on networks, computers and communications (ISNCC) C (pp. 1–6). https://doi.org/https://doi.org/10.1109/ISNCC.2018.8530969.

  58. Nguyen, H. A., & Choi, D. (2008). Application of data mining to network intrusion detection: Classifier selection model. In Y. Ma, D. Choi, & S. Ata (Eds.), Challenges for next generation network operations and service management. APNOMS 2008. Lecture notes in computer science, 5297. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-88623-5_41

    Chapter  Google Scholar 

  59. Mukherjee, S., & Sharma, N. (2012). Intrusion Detection using Naive Bayes Classifier with Feature Reduction. In Proceedings of the second international conference on computer, communication, control and information technology (C3IT) (vol. 4, pp. 119–128). Elsevier—Procedia Technology. https://doi.org/https://doi.org/10.1016/j.protcy.2012.05.017.

  60. Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD Thesis, University of Waikato, Hamilton, The New Zealand.

  61. Jolliffe, I. T. (2005). Principal component analysis. Encyclopaedia of statistics in behavioural science. Hoboken: Wiley. https://doi.org/10.1002/9781118445112.stat06472

    Book  MATH  Google Scholar 

  62. Ye, J. (2007). CSE 494 CSE/CBS 598 (Fall 2007): Numerical linear algebra for data exploration—Two dimensional SVD and PCA.

  63. Delac, K., Grgic, M., & Grgic, S. (2005). Independent comparative study of PCA, ICA, and LDA on the FERET data set. International Journal of Imaging Systems and Technology, 15, 252–260. https://doi.org/10.1002/ima.20059

    Article  Google Scholar 

  64. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: practical machine learning tools and techniques (3rd ed.). San Francisco, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  65. Khalifa, K., & Omar, N. (2014). A hybrid method using lexicon-based approach and naive Bayes classifier for Arabic opinion question answering. Journal of Computer Science, 10(10), 1961–1968. https://doi.org/10.3844/jcssp.2014.1961.1968

    Article  Google Scholar 

  66. Shang-fu, G., & Chun-lan, Z. (2012). Intrusion detection system based on classification. In IEEE international conference on intelligent control, automatic detection and high-end equipment (pp. 78–83). IEEE Computer Society, USA. https://doi.org/https://doi.org/10.1109/ICADE.2012.6330103.

  67. Upendra. (2013). An efficient feature reduction comparison of machine learning algorithms for intrusion detection system. International Journal of Emerging Trends and Technology in Computer Science, 2(1), 66–70.

    Google Scholar 

  68. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  69. Spencer, M., Eickholt, J., & Cheng, J. (2015). A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12(1), 103–112. https://doi.org/10.1109/TCBB.2014.2343960 PMID:25750595.

    Article  Google Scholar 

  70. Tan, S., & Zhang, J. (2008). An empirical study of sentiment analysis for Chinese documents. Expert Systems with Applications, 34(4), 2622–2629. https://doi.org/10.1016/j.eswa.2007.05.028

    Article  Google Scholar 

  71. Larose, D. (2014). Data preprocessing-discovering knowledge in data: An introduction to data mining (pp. 27–40). Hoboken: Wiley. https://doi.org/10.1002/0471687545

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nivaashini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nivaashini, M., Thangaraj, P. Computational intelligence techniques for automatic detection of Wi-Fi attacks in wireless IoT networks. Wireless Netw 27, 2761–2784 (2021). https://doi.org/10.1007/s11276-021-02594-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02594-2

Keywords

Navigation