Skip to main content

Advertisement

Log in

Energy management for age of information control in solar-powered IoT end devices

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose several harvesting-aware energy management policies for solar-powered wireless IoT end devices that asynchronously send status updates for their surrounding environments to a network gateway device. For such devices, we aim at minimizing the average age of information (AoI) metric which has recently been investigated extensively for status update systems. The proposed energy management policies are obtained using discrete-time Markov chain-based modeling of the stochastic intra-day variations of the solar energy harvesting process in conjunction with the average reward Markov decision process formulation. With this approach, energy management policies are constructed by using the time of day and month of year information in addition to the instantaneous values of the age of information and the battery level. The effectiveness of the proposed energy management policies in terms of their capability to reduce the average AoI as well as improving upon the tail of the AoI distribution, is validated with empirical data for a wide range of system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abd-Elmagid, M. A., & Dhillon, H. S. (2019). Average peak age-of-information minimization in UAV-assisted IoT networks. IEEE Transactions on Vehicular Technology, 68(2), 2003–2008.

    Article  Google Scholar 

  2. Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks, 14(2), 10:1-10:50.

    Article  Google Scholar 

  3. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  4. Alsheikh, M. A., Hoang, D. T., Niyato, D., Tan, H., & Lin, S. (2015). Markov decision processes with applications in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 17(3), 1239–1267.

    Article  Google Scholar 

  5. Arafa, A., & Ulukus, S. (2017). Age minimization in energy harvesting communications: Energy-controlled delays. In 2017 51st Asilomar conference on signals, systems, and computers (pp. 1801–1805).

  6. Arafa, A., Yang, J., & Ulukus, S. (2018) Age-minimal online policies for energy harvesting sensors with random battery recharges. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).

  7. Bacinoglu, B. T., & Uysal-Biyikoglu, E. (2017). Scheduling status updates to minimize age of information with an energy harvesting sensor. In 2017 IEEE international symposium on information theory (ISIT) (pp. 1122–1126).

  8. Bengheni, A., Didi, F., & Bambrik, A. (2019). EEM-EHWSN: enhanced energy management scheme in energy harvesting wireless sensor networks. Wireless Networks, 25, 3029–3046.

    Article  Google Scholar 

  9. Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9(9), 6869–6896.

    Article  Google Scholar 

  10. Castagnetti, A., Pegatoquet, A., Belleudy, C., & Auguin, M. (2012). A framework for modeling and simulating energy harvesting WSN nodes with efficient power management policies. EURASIP Journal on Embedded Systems, 1, 8.

    Article  Google Scholar 

  11. Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67.

    Article  Google Scholar 

  12. Cha, M., Kim, M., Kim, M., & Choo, H. (2011). Adaptive duty-cycling based on group size for energy balance of sensor nodes in wireless sensor networks. In Proceedings of the 2011 ACM symposium on research in applied computation, ACM, New York, NY, USA, RACS’11 (pp. 135–140).

  13. Champati, J. P., Al-Zubaidy, H., & Gross, J. (2018). Statistical guarantee optimization for age of information for the D/G/1 queue. In IEEE INFOCOM 2018—IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 130–135).

  14. Deng, F., Yue, X., Fan, X., Guan, S., Xu, Y., & Chen, J. (2019). Multisource energy harvesting system for a wireless sensor network node in the field environment. IEEE Internet of Things Journal, 6(1), 918–927.

    Article  Google Scholar 

  15. Devillers, B., & Gndz, D. (2012). A general framework for the optimization of energy harvesting communication systems with battery imperfections. Journal of Communications and Networks, 14(2), 130–139.

    Article  Google Scholar 

  16. Feng, S., & Yang, J. (2018). Optimal status updating for an energy harvesting sensor with a noisy channel. In IEEE INFOCOM 2018—IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 348–353).

  17. Gelenbe, E., & Zhang, Y. (2019). Performance optimization with energy packets. IEEE Systems Journal, 13(4), 3770–3780.

    Article  Google Scholar 

  18. Gorlatova, M., Wallwater, A., & Zussman, G. (2013). Networking low-power energy harvesting devices: Measurements and algorithms. IEEE Transactions on Mobile Computing, 12(9), 1853–1865.

    Article  Google Scholar 

  19. Gosavi, A. (2015). Simulation-based optimization parametric optimization techniques and reinforcement learning (2nd ed.). Springer.

  20. Gu, Y., Zhu, T., & He, T. (2009) ESC: Energy synchronized communication in sustainable sensor networks. In 2009 17th IEEE international conference on network protocols (pp. 52–62).

  21. Harrison, P. G., & Patel, N. M. (2018). Optimizing energy-performance trade-offs in solar-powered edge devices. In Proceedings of the 2018 ACM/SPEC international conference on performance engineering, ACM, New York, NY, USA, ICPE’18 (pp. 253–260).

  22. Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., & Perillo, M. A. (2004). Middleware to support sensor network applications. IEEE Network, 18(1), 6–14.

    Article  Google Scholar 

  23. Howard, R. A. (1960). Dynamic programming and Markov processes. MIT Press.

  24. Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., & Raghunathan, V. (2006) Adaptive duty cycling for energy harvesting systems. In Proceedings of the 2006 international symposium on low power electronics and design, ACM, New York, NY, USA, ISLPED’06 (pp. 180–185).

  25. Huang, L., & Modiano, E. (2015). Optimizing age-of-information in a multi-class queueing system. In 2015 IEEE international symposium on information theory (ISIT) (pp. 1681–1685).

  26. Ingenu. (2016). How RPMA works: The making of RPMA. Ebook by Ingenu.

  27. Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 66.

    Article  Google Scholar 

  28. Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 27.

    Article  Google Scholar 

  29. Kaul, S., Gruteser, M., Rai, V., & Kenney, J. (2011). Minimizing age of information in vehicular networks. In 2011 8th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 350–358).

  30. Kaul, S., Yates, R., & Gruteser, M. (2012). Real-time status: How often should one update? In 2012 Proceedings IEEE INFOCOM (pp. 2731–2735).

  31. Kaul, S. K., Yates, R. D., & Gruteser, M. (2012). Status updates through queues. In 2012 46th Annual conference on information sciences and systems (CISS) (pp. 1–6).

  32. Kaur, P., Singh, P., & Sohi, B. S. (2019). Adaptive MAC protocol for solar energy harvesting based wireless sensor networks in agriculture. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06985-9.

    Article  Google Scholar 

  33. Khan, J. A., Qureshi, H. K., & Iqbal, A. (2015). Energy management in wireless sensor networks: A survey. Computers and Electrical Engineering, 41, 159–176.

    Article  Google Scholar 

  34. Kosta, A., Pappas, N., & Angelakis, V. (2017). Age of information: A new concept, metric, and tool. Foundations and Trends in Networking, 12(3), 162–259.

    Article  Google Scholar 

  35. Ku, M., Chen, Y., & Liu, K. J. R. (2015). Data-driven stochastic models and policies for energy harvesting sensor communications. IEEE Journal on Selected Areas in Communications, 33(8), 1505–1520.

    Google Scholar 

  36. Liu, H., Chandra, A., & Srivastava, J. (2006) eSENSE: Energy efficient stochastic sensing framework scheme for wireless sensor platforms. In Proceedings of the 5th international conference on information processing in sensor networks, ACM, New York, NY, USA, IPSN’06 (pp. 235–242).

  37. Margelis, G., Piechocki, R., Kaleshi, D., & Thomas, P. (2015). Low throughput networks for the IoT: Lessons learned from industrial implementations. In 2015 IEEE 2nd world forum on internet of things (WF-IoT) (pp. 181–186).

  38. Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications, 61(7), 2988–3001.

    Article  Google Scholar 

  39. Mikhaylov, K., Petaejaejaervi, J., & Haenninen, T. (2016). Analysis of capacity and scalability of the LoRa low power wide area network technology. In 22th European wireless conference on European wireless 2016 (pp. 119–124).

  40. Moser, C., Chen, J. J., & Thiele, L. (2008). An energy management framework for energy harvesting embedded systems. Journal on Emerging Technologies in Computing Systems, 6(2), 7:1-7:21.

    Google Scholar 

  41. National Renewable Energy Laboratory. (2018). National solar radiation database. Retrieved August 15, 2018, from https://rredc.nrel.gov/solar/old_data/nsrdb.

  42. Nguyen, D. T., & Le, L. B. (2014). Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Transactions on Smart Grid, 5(4), 1608–1620.

    Article  Google Scholar 

  43. Pappas, N., Gunnarsson, J., Kratz, L., Kountouris, M., & Angelakis, V. (2015) Age of information of multiple sources with queue management. In 2015 IEEE international conference on communications (ICC) (pp. 5935–5940).

  44. Reddy, S., & Murthy, C. R. (2010). Profile-based load scheduling in wireless energy harvesting sensors for data rate maximization. In 2010 IEEE international conference on communications (pp. 1–5).

  45. Sharma, A., & Kakkar, A. (2019). Machine learning based optimal renewable energy allocation in sustained wireless sensor networks. Wireless Networks, 25, 3953–3981.

    Article  Google Scholar 

  46. Sharma, V., Mukherji, U., Joseph, V., & Gupta, S. (2010). Optimal energy management policies for energy harvesting sensor nodes. IEEE Transactions on Wireless Communications, 9(4), 1326–1336.

    Article  Google Scholar 

  47. Sinha, A., & Chandrakasan, A. (2001). Dynamic power management in wireless sensor networks. IEEE Design Test of Computers, 18(2), 62–74.

    Article  Google Scholar 

  48. Stamatakis, G., Pappas, N., & Traganitis, A. (2018). Optimal policies for status update generation in a wireless system with heterogeneous traffic. CoRR abs/1810.03201, arxiv:1810.03201.

  49. Sun, Y., Uysal-Biyikoglu, E., Yates, R. D., Koksal, C. E., & Shroff, N. B. (2017). Update or wait: How to keep your data fresh. IEEE Transactions on Information Theory, 63(11), 7492–7508.

    Article  MathSciNet  Google Scholar 

  50. Sutton, R. S., & Barto, A. G. (2018). Introduction to reinforcement learning (2nd ed.). MIT Press.

  51. Swapna Kumar, S., & Kashwan, K. (2013). Research study of energy harvesting in wireless sensor networks. International Journal of Renewable Energy Research, 3, 745–753.

    Google Scholar 

  52. Tripathi, V., Talak, R., & Modiano, E. (2019). Age of information for discrete time queues. CoRR abs/1901.10463, arxiv:1901.10463.

  53. Tunc, C., & Akar, N. (2017). Markov fluid queue model of an energy harvesting IoT device with adaptive sensing. Performance Evaluation, 111, 1–16.

    Article  Google Scholar 

  54. Tutuncuoglu, K., & Yener, A. (2012). Optimum transmission policies for battery limited energy harvesting nodes. IEEE Transactions on Wireless Communications, 11(3), 1180–1189.

    Article  Google Scholar 

  55. Tutuncuoglu, K., Yener, A., & Ulukus, S. (2015). Optimum policies for an energy harvesting transmitter under energy storage losses. IEEE Journal on Selected Areas in Communications, 33(3), 467–481.

    Article  Google Scholar 

  56. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., & Huang, K. (2015). Energy harvesting wireless communications: A review of recent advances. IEEE Journal on Selected Areas in Communications, 33(3), 360–381.

    Article  Google Scholar 

  57. Vigorito, C. M., Ganesan, D., Barto, A. G. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In 2007 4th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 21–30).

  58. Wu, X., Yang, J., & Wu, J. (2018). Optimal status update for age of information minimization with an energy harvesting source. IEEE Transactions on Green Communications and Networking, 2(1), 193–204. https://doi.org/10.1109/TGCN.2017.2778501.

    Article  Google Scholar 

  59. Xu, G., Shen, W., & Wang, X. (2014). Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors, 14(9), 16932–16954.

    Article  Google Scholar 

  60. Yang, J., & Ulukus, S. (2012). Optimal packet scheduling in an energy harvesting communication system. IEEE Transactions on Communications, 60(1), 220–230.

    Article  Google Scholar 

  61. Zhang, S. (2013). Modeling, analysis and design of energy harvesting communication systems. PhD thesis, Dept. of Electrical and Computer Engineering, University of Rochester.

  62. Zhou, G., Huang, L., Li, W., & Zhu, Z. (2014). Harvesting ambient environmental energy for wireless sensor networks: A survey. Journal of Sensors, 2014, 1–20.

    Google Scholar 

  63. Zhu, T., Zhong, Z., Gu, Y., He, T., & Zhang, Z. L. (2009) Leakage-aware energy synchronization for wireless sensor networks. In Proceedings of the 7th international conference on mobile systems, applications, and services, ACM, New York, NY, USA, MobiSys ’09 (pp. 319–332).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Akar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, A.K., Akar, N. Energy management for age of information control in solar-powered IoT end devices. Wireless Netw 27, 3165–3178 (2021). https://doi.org/10.1007/s11276-021-02637-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02637-8

Keywords

Navigation