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Achieving Arbitrary Throughput-Fairness Trade-offs in the Inter

Cell Interference Coordination with Fixed Transmit Power Problem

Vaibhav Kumar Gupta, and Gaurav S. Kasbekar

Abstract—We study the problem of inter cell interference
coordination (ICIC) with fixed transmit power in OFDMA-based
cellular networks, in which each base station (BS) needs to
decide as to which subchannel, if any, to allocate to each of its
associated mobile stations (MS) for data transmission. In general,
there exists a trade-off between the total throughput (sum of
throughputs of all the MSs) and fairness under the allocations
found by resource allocation schemes. We introduce the concept
of τ−α−fairness by modifying the concept of α−fairness, which
was earlier proposed in the context of designing fair end-to-end
window-based congestion control protocols for packet-switched
networks. The concept of τ − α−fairness allows us to achieve
arbitrary trade-offs between the total throughput and degree of
fairness by selecting an appropriate value of α in [0,∞). We
show that for every α ∈ [0,∞) and every τ > 0, the problem
of finding a τ − α−fair allocation is NP-Complete. Further, we
show that for every α ∈ [0,∞), there exist thresholds such
that if the potential interference levels experienced by each MS
on every subchannel are above the threshold values, then the
problem can be optimally solved in polynomial time by reducing
it to the bipartite graph matching problem. Also, we propose
a simple, distributed subchannel allocation algorithm for the
ICIC problem, which is flexible, requires a small amount of
time to operate, and requires information exchange among only
neighboring BSs. We investigate via simulations as to how the
algorithm parameters should be selected so as to achieve any
desired trade-off between the total throughput and fairness.

Index Terms—Cellular Networks, Inter Cell Interference Co-
ordination, Complexity, Algorithms, Fairness, Polynomial Time
Solution.

I. INTRODUCTION

The Long Term Evolution (LTE) - Advanced cellular sys-

tem, which is a 4G technology that is being extensively de-

ployed throughout the world, relies on Orthogonal Frequency

Division Multiple Access (OFDMA) technology [2]. Often, an

OFDMA-based cellular network is deployed with frequency

reuse factor one, i.e., the entire available frequency band can

be potentially used in all the cells. Also, the dense deployment

of small sized cells in 4G systems to increase the system ca-

pacity results in non-negligible inter cell interference [3], [4].

4G can also support a large number of mobile devices simul-

taneously, which generate high data traffic in each cell, and

this results in heavy inter cell interference [3], [4]. Therefore,

how to combat inter cell interference in these systems is an

important question. Moreover, although it is expected that in

5G cellular networks, mmWave spectrum will be used, on

which communication will take place using highly directional

antennas, which reduces the amount of inter cell interference,
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it is likely that lower-frequency bands will continue to be

used in the future (e.g., to achieve wide coverage, support

high mobility users etc), on which a large amount of inter cell

interference can potentially take place [5].

Static and dynamic schemes are the two broad categories

of interference avoidance techniques. Inter cell interference

coordination (ICIC) is a prime class of dynamic interference

avoidance schemes, which can be further categorized into the

schemes using variable transmit power and fixed transmit

power allocations on subchannels [3]. The ICIC problem with

fixed transmit power allocation on subchannels is the focus of

this work. In this problem, each base station (BS), if a given

subchannel is assigned to a mobile station (MS) within its

cell, transmits with fixed power on the assigned subchannel

and does not transmit on subchannels that are not assigned to

any MS in its cell. Therefore, the problem translates into a

problem of deciding as to which MS, if any, to allocate each

available subchannel to in each cell. Note that typically in each

cell, some of the subchannels are not assigned to any MS in

order to limit the inter cell interference.

Most of the proposed resource allocation schemes to address

the ICIC problem consider maximizing the total throughput,

i.e., the sum of throughputs of all the MSs in the system, while

completely neglecting the aspect of fairness [4], [6], [7], [8],

[9], [10], [11]. In the context of cellular systems, fairness

means that each MS, irrespective of its channel gain (which is

a measure of the quality of the channel from the BS to the MS),

has an equal chance of being allocated each of the available

subchannels, i.e., no MS is preferred over the other MSs while

allocating a subchannel in the system. Maximization of the

total throughput results in high throughput of the MSs with

good channel gain values; however, this is at the cost of low

throughput of the MSs with poor channel gain values such

as MSs at the cell boundaries [12]. However, one of the

objectives of 4G systems is to offer good data rates to the

MSs at the cell boundaries [9]. On the other hand, if lower

(respectively, higher) throughputs were assigned to MSs with

good (respectively, poor) channel gains, then it would lead

to better fairness, but at the expense of a decrease in the

total throughput. So, there exists a trade-off between the total

throughput and fairness of resource allocation schemes [13].

Motivated by this fact, our objective in this paper is to formu-

late the problem of achieving different trade-offs between the

total throughput and fairness, study its complexity and design

a distributed resource allocation algorithm to solve it.

We use Jain’s fairness index, which was proposed in [14]

and has been extensively used in the networking literature, e.g.,

in [12], [13], [15], as a fairness metric. One way to optimize

the total throughput-fairness trade-off in cellular systems is to

http://arxiv.org/abs/1912.12001v1
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allocate resources such that the total throughput is maximized

subject to the constraint that the throughput of each MS must

exceed some predefined lower bound [12]. The trade-off can

be optimized by varying the values of these lower bounds

over the set of achievable rates. Another way is to use the

α−fair scheme, which was originally proposed in the context

of designing fair end-to-end window-based congestion control

protocols for packet-switched networks [16]. In the α−fair

scheme, a parametric objective function, which is a function of

the throughputs of the users and a parameter α, is maximized.

The parameter α is varied to achieve the required trade-off

between the total throughput and fairness. For instance, the

maximum total throughput (and minimum degree of fairness)

is obtained when α = 0. Similarly, proportional fairness [17]

and max-min fairness [18] correspond to α = 1 and α = ∞
respectively. In general, the degree of fairness (respectively,

total throughput) increases (respectively, decreases) as α in-

creases [19].

In this paper, we adapt the concept of α−fairness to the

problem of ICIC with fixed transmit power, and show via

simulations in Section VI that when the adapted α-fair scheme

is used to find a subchannel allocation, the Jain’s fairness index

increases and the total throughput decreases with α. Thus, the

adapted α−fair scheme provides any degree of fairness by

choosing an appropriate value of α in [0,∞), which is not

possible in the scheme using predefined lower bounds [12]

(see the previous paragraph). In addition, there is no clear

procedure to select the lower bounds on the throughput of each

MS in the latter scheme. In contrast, no lower bounds on the

throughputs of MSs need to be selected in the adapted α−fair

scheme, which makes its implementation simpler than that

of the scheme that uses predefined lower bounds. However,

the concept of α−fairness in [16] has to be modified by

introducing a new parameter τ > 0 in the original parametric

objective function. If the original parametric objective function

were directly used in our context without change, the following

problem would arise. If no subchannel is allocated to a MS

(e.g., when the number of available subchannels is small

relative to the number of MSs), its throughput is 0; this

makes the value of the originally defined parametric objective

function of the system −∞ for α > 1. Therefore, we introduce

the concept of τ −α−fairness, which is a modification of the

aforementioned α−fairness, and we define a new parametric

objective function in Section III, which is a function of both

α and τ . We prove that the problem of finding a τ − α−fair

allocation in the ICIC with fixed transmit power problem is

NP-Complete for all values of α in the range [0,∞) and for

all τ > 0 (see Section IV-A).

Next, we address the question of finding conditions under

which the problem of finding a τ − α−fair allocation in the

ICIC with fixed transmit power problem is solvable in polyno-

mial time. Interestingly, it turns out that for every α ∈ [0,∞),
there exist thresholds such that if the potential interference

levels experienced by each MS on every subchannel are above

the threshold values, then the problem can be optimally solved

in polynomial time by reducing it to the bipartite graph

matching problem [20] (see Section IV-B). Also, the above

threshold values are decreasing functions of the transmit power

level of each BS. The above result implies that for a scenario in

which BSs are densely deployed in an area and transmit with

high power, the problem of finding a τ −α−fair allocation in

the ICIC with fixed transmit power problem can be optimally

solved in polynomial time. This is a surprising result since the

above problem is NP-Complete in general (see the previous

paragraph).

Next, we propose a simple distributed subchannel allocation

algorithm for the ICIC with fixed transmit power problem

(see Section V) and investigate as to how the algorithm

parameters should be selected so as to achieve a desired trade-

off between the total throughput and fairness, via simulations.

The proposed algorithm is flexible, requires a small amount

of time to operate, and requires information exchange among

only neighboring BSs.

The rest of this paper is organized as follows. In Section II,

we review related research literature. We describe the system

model and problem formulation in Section III. The complexity

of the problem is analyzed and conditions under which it

is polynomial time solvable are derived in Section IV. A

distributed algorithm to solve the problem is presented in

Section V. We present simulation results in Section VI, and

provide conclusions and directions for future research in

Section VII.

II. RELATED WORK

Resource allocation algorithms for the ICIC problem were

proposed in [4], [6], [7], [8], [9], [10], [11], [21], but the

aspect of fairness was not considered. The ICIC problem with

the objective of maximizing the total throughput of a multi-

cell system with multiple subchannels was investigated in our

prior work [7], the problem was proved to be NP-Complete,

and a set of conditions under which the problem can be solved

in polynomial time were derived. However, in contrast to this

paper, the aspect of fairness was not studied in [7].

We now review the existing literature on resource allocation

that considers the fairness aspect in cellular systems. The

authors of [13] proposed two multi-user resource allocation

schemes to achieve an optimal system efficiency-fairness

trade-off. For these schemes to apply, the user’s benefit set

must satisfy the monotonic trade-off property in which the

Jain’s fairness index decreases with the increase in the system

efficiency beyond a threshold value. In contrast, our proposed

scheme does not require such a monotonic trade-off condition

to be satisfied. A two-stage resource allocation algorithm for

achieving fair cell-edge performance was proposed in [22].

However, in [22], only the cell-edge MSs and the interference

caused only by the dominant BS were considered. In contrast,

in this paper, we consider all the MSs, and the interference

to an MS caused by all the BSs, except the one serving the

MS, which transmit over the subchannel used by the MS.

A resource allocation algorithm for an OFDMA based single

cell multicast system with proportional fairness was proposed

in [23]. A waterfilling cumulative distribution function based

scheduling scheme for uplink transmissions, which provides
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fair resource sharing, in a single cell cellular network was

proposed in [24]. The authors of [25] formulated the fair

resource allocation problem in a single cell system as a mixed

integer problem and proposed two suboptimal algorithms, for

chunk allocation and power allocation, respectively. How-

ever, [23], [24] and [25] consider a single cell system; in

contrast, we consider a multi-cell system in this paper.

A joint user association and ICIC problem was formulated

as a utility maximization problem and an iterative algorithm

was proposed to solve it in [26]. A logarithmic utility function

was used to obtain a proportional fair solution, which is

similar to the case α = 1 in our work. However, no schemes

were provided to achieve different trade-offs between the total

throughput and level of fairness. In contrast, in this paper,

we provide a resource allocation scheme that can be used

to achieve arbitrary trade-offs between the total throughput

and level of fairness. In [27], an analytical framework was

proposed to investigate fairness-throughput trade-offs in the

context of non-orthogonal multiple access (NOMA) downlink

broadcasting in cellular networks. The ratio of weak user to

strong user throughput is used as a fairness metric in [27]. The

authors of [28] proposed a distributed optimization scheme for

joint user association and ICIC with the proportional fairness

criterion in small cell deployments. A fair distributed resource

allocation algorithm to achieve a high total throughput in

heterogeneous networks was proposed in [29]. To ensure

fairness, users in BSs that have low satisfaction degrees (ratio

of number of channels currently allocated and number of

required channels) and high traffic requirement levels are pref-

erentially allocated channels. Also, in [23] (respectively, [25]),

an allocation algorithm was proposed to provide proportional

fairness (respectively, max-min fairness), which corresponds to

the case α = 1 (respectively, α = ∞), of the scheme proposed

in our work. In contrast to [23], [25], [26], [27], [28] and [29],

a modification of the α−fairness criterion is considered in this

paper. Note that we consider all the values of α in [0,∞),
which correspond to different trade-offs between the total

throughput and fairness.

A semi-centralized joint cell muting and user scheduling

scheme for interference coordination with temporal fairness

in multi-cell networks was proposed in [30]. Downlink trans-

mission over a single subchannel was considered. In contrast,

multiple subchannels are considered in this paper. The authors

of [31] studied a problem similar to that in this paper, but in the

context of a system consisting of resources (CPUs) and users

instead of OFDMA based cellular networks. The dominant

α−fairness concept was proposed and the trade-off between

fairness and efficiency was studied.

To the best of our knowledge, our work is the first to formu-

late the ICIC with fixed transmit power problem with the goal

of achieving arbitrary trade-offs between the total throughput

and fairness; in addition, we characterize the complexity of

this problem, derive conditions under which the problem is

polynomial time solvable, propose a distributed algorithm to

solve it and evaluate its performance via simulations.

c
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Fig. 1: In the example in the figure, there are two subchannels;

let {1, 2} be the two subchannels in N . Subchannel 1 is

allocated to the 1st, 4th and 8th MSs, and subchannel 2 is

allocated to the 2nd, 6th and 9th MSs as shown by the different

arrows in the figure.

III. SYSTEM MODEL, PROBLEM DEFINITION AND

BACKGROUND

We consider an OFDMA based cellular system in which

there are multiple cells; in each cell, a base station (BS) serves

the mobile stations (MS) in the cell. The available frequency

band (channel) is divided into multiple subchannels; each

subchannel has equal bandwidth. Let the set of all BSs and the

set of all available subchannels be denoted by B = {1, . . . ,K}
and N = {1, . . . , N} respectively. The cardinality of a set

A is denoted by |A|. Suppose frequency reuse factor one is

used, which implies that any subset of the BSs in B may use

the same subchannel in N simultaneously. Let Ma represent

the set of all the MSs associated with BS a ∈ B and let

|Ma| = Ma. Similarly, the set of all MSs in the system is

represented by M = ∪a∈BMa. Therefore, the total number

of MSs in the system is given by M =
∑

a∈B Ma. Whenever

two or more BSs simultaneously allocate a given subchannel to

one of their associated MSs, it results in inter cell interference.

Note that typically in each cell, some of the subchannels

are not assigned to any MS in order to limit the inter cell

interference. The example in Fig. 1 illustrates the model.

We consider the problem of subchannel allocation to MSs

for downlink transmissions (i.e., transmissions from BSs to

MSs) in a given time slot. Let

zna,j =

{

1, if MS j ∈ Ma is assigned subchannel n,

0, otherwise.
(1)

The complete allocation is denoted by Z = {zna,j : a ∈ B, j ∈
Ma, n ∈ N}. Let

yna =
∑

j∈Ma

zna,j . (2)

Intra-cell interference can be avoided by introducing the

constraint that any subchannel n cannot be allocated to more

than one MS within a cell; thus, we obtain the constraint:

yna ∈ {0, 1}, ∀a ∈ B, n ∈ N . (3)

Also, yna equals 1 if subchannel n is assigned to one of the MSs

in Ma, else 0. Any given BS a ∈ B transmits on a subchannel

n ∈ N with fixed power P if zna,j = 1 for some j ∈ Ma; else

transmits with power 0. Assume that the noise power spectral

density is N0. Let each subchannel n ∈ N be an approxi-

mately flat fading channel; that is, the coherence bandwidth

is larger than the subchannel bandwidth [32]. Let Hn
a,j denote

the channel gain (which is a measure of the channel quality)
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Fig. 2: The figure illustrates a network with multiple flows over

it. There are four nodes, S0, . . . , S3, five links, L1, . . . , L5, and

three flows, f0, f1, f2, in the network.

from BS a to MS j on subchannel n; we assume that the

channel gain values {Hn
a,j : a ∈ B, j ∈ M, n ∈ N} remain

unchanged during the considered time slot. Orthogonal cell-

specific reference signals can be used to estimate the channel

gain values {Hn
a,j : a ∈ B, j ∈ M, n ∈ N} [3]. Hence, we

assume that the channel gain values {Hn
a,j : j ∈ M, n ∈ N}

are known to BS a.

Consider an allocation Z = {zna,j : a ∈ B, j ∈ Ma, n ∈
N}. If Z satisfies (2) and (3), it is called a feasible allocation.

Given a feasible allocation Z, the total throughput of all the

MSs in the network is given by:

U(Z) =
∑

a∈B

∑

j∈Ma

∑

n∈N

zna,j log









1 +
PHn

a,j

P
∑

i∈B,i6=a

Hn
i,jy

n
i +N0









.

(4)

In (4), the throughput of the channel from BS a to MS j is

calculated using the Shannon capacity formula for each a ∈
B and j ∈ Ma [33]; in particular, the second term inside

the log(·) is the Signal to Interference and Noise ratio on

subchannel n from BS a to MS j. As a normalization, we

assume that each subchannel has unit bandwidth.

For future use, suppose the throughput of MS j ∈ Ma is

denoted as follows:

Uj(Z) =
∑

n∈N

zna,j log









1 +
PHn

a,j

P
∑

i∈B,i6=a

Hn
i,jy

n
i +N0









. (5)

Note that:

U(Z) =
∑

a∈B

∑

j∈Ma

Uj(Z) =
∑

j∈M

Uj(Z). (6)

The notion of α−fair allocation was introduced in the

context of multiple flows over a network having multiple nodes

and links [16] as illustrated by the example in Fig. 2. The

capacity of each link is finite and fixed. Each flow traverses

a path that consists of multiple links and transmits at some

flow rate. The concept of α−fair allocation was introduced

to address the problem of how the bandwidths of the links

in the network can be shared in a fair manner among the

different flows [16]. Suppose S, L and F are the sets of

all the nodes, links and flows respectively, in a network (see

Fig. 2). Let xr ≥ 0 be the flow rate of flow r ∈ F and let

X = {xr : r ∈ F} represent the flow rate vector. For α > 0,

the utility of a flow r is defined as Uα
r (xr) = log(xr) if

α = 1 and Uα
r (xr) =

x1−α
r

1−α
if α 6= 1. The flow rate vector X

which maximizes
∑

r∈F Uα
r (xr), i.e., the total utility of all the

flows, such that the sum of the flow rates through any link does

not exceed its capacity, is known as the α−fair allocation. In

general, the degree of fairness (respectively, total throughput)

under the α-fair allocation increases (respectively, decreases)

as α increases [19].

In the model in this paper, the users of the network are

MSs, in contrast to the above model where the users are

the various flows. If the above definition of α−fairness were

directly used in our context without change, i.e., if we defined

the α-fair allocation to be the feasible allocation Z that

maximizes
∑

j∈M log(Uj(Z)) if α = 1 and
∑

j∈M
Uj(Z)1−α

1−α

if α 6= 1, the following problem would arise. If no sub-

channel is allocated to a MS j, its throughput, Uj(Z), is 0

(see (5)); this makes
∑

l∈M
Ul(Z)1−α

1−α
= −∞ for α > 1 since

Uj(Z)1−α

1−α
= −∞ for Uj(Z) = 0 and α > 1. Note that this is a

potentially commonly arising situation in practice, e.g., some

of the MSs would not be assigned any subchannels when the

number of subchannels is small relative to the number of MSs

in the network. To avoid this situation, we define a modified

α−fair utility function by incorporating a positive number τ .

Specifically, for a given α ∈ [0,∞), τ > 0 and a feasible

allocation Z, we define the τ − α−fair utility function of the

system as follows:

Uα,τ (Z) =

{
∑

j∈M log(τ + Uj(Z)), if α = 1,
∑

j∈M
(τ+Uj(Z))1−α

1−α
, if α 6= 1.

(7)

Suppose the set of all possible feasible allocations is denoted

by Z . We define a τ − α−fair allocation to be a feasible

allocation Z ∈ Z that maximizes the function Uα,τ (Z) in (7).

Our goal is to find a τ − α−fair allocation:

Problem 1: Find a τ − α−fair allocation.

Our simulations (see Section VI) show that by solving

Problem 1 with a fixed value τ > 0 and different values

of α ∈ [0,∞), allocations that achieves various trade-offs

between the total throughput and degree of fairness can be

obtained. Also, the question of how the value of τ in Problem 1

should be selected is addressed in Section VI.

IV. COMPLEXITY ANALYSIS

A. NP-Completeness of Problem 1

In this section, we show that for each α ∈ [0,∞) and τ > 0,
Problem 1 is NP-Complete. The decision version associated

with Problem 1 is: for a given number T , can we find a feasible

allocation Z which satisfies the condition Uα,τ (Z) ≥ T ? The

following result shows that (the decision version of) Problem 1

is NP-Complete.

Theorem 1: For each α ∈ [0,∞) and τ > 0, Problem 1 is

NP-Complete.

Proof: For any allocation Z, it is possible to verify in

polynomial time whether Z is feasible or not using (2) and (3).

Also, we can calculate Uα,τ (Z) using (7) and verify whether
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Uα,τ (Z) ≥ T in polynomial time. Hence, Problem 1 lies in

class NP [20].

Next, we show the NP-Completeness of Problem 1 by

reducing the Maximum Independent Set (MIS) problem, which

is known to be NP-Complete [20], to Problem 1 in polynomial

time, i.e., we show that MIS <p Problem 1. Consider the

following instance of the MIS problem: we are given an

undirected graph G = (V,E), in which V and E are vertex

set and edge set respectively, and a positive integer k. Does

there exist an independent set of size at least k in G?

From the above instance, a particular instance of Problem 1

is generated as follows: suppose that only one subchannel1

is available (i.e., N = 1). Let B = V , i.e., corresponding to

each node a ∈ V , there is a BS a ∈ B. Also, there is 1 MS

associated with each BS (i.e., Ma = 1 for all a ∈ B). Let ja
denote the MS associated with BS a and the edge connecting

the two distinct nodes u and v is denoted by (u, v).

Consider the above generated instance of Problem 1 and let

No = P . Suppose the channel gains are modelled as follows:

Hu,ju = 2, ∀u ∈ V (8)

Hu,jv =

{

∞, if (u, v) ∈ E, u 6= v,

0, else.
(9)

Consider an allocation Z = {zu,ju ∈ {0, 1} : u ∈ V } in the

generated instance of Problem 1. Since Mu = 1 for all u ∈ V ,

it implies that yu ∈ {0, 1} for all u ∈ V ; so constraints (2) and

(3) are satisfied. Thus, every allocation Z = {zu,ju ∈ {0, 1} :
u ∈ V } is feasible in the generated instance.

Now, we divide the proof into three cases depending on the

value of α.

Case (i): α < 1:

The utility of the system under τ − α−fair allocation is

calculated by (7) for α < 1. In the generated instance of Prob-

lem 1, we want to verify whether there exists a (feasible) allo-

cation Z which satisfies Uα,τ (Z) ≥
k

(1−α) (τ + log (3))
1−α

+
|V |−k

1−α
τ1−α? Our claim is that the answer is yes if and only

if an independent set of size at least k exists in G. To show

sufficiency, suppose an independent set, I , of size k′ ≥ k

exists in G. Then by (7), (8) and (9), the following allocation:

zu,ju =

{

1, if u ∈ I,

0, else,
(10)

has utility k′

(1−α) (τ + log (3))
1−α

+ |V |−k′

1−α
τ1−α ≥

k
(1−α) (τ + log (3))

1−α
+ |V |−k

1−α
τ1−α since k′ ≥ k, which

shows sufficiency. To show necessity, suppose that an

allocation Z = {zu,ju ∈ {0, 1} : u ∈ V } exists such that:

Uα,τ (Z) ≥
k

(1 − α)
(τ + log (3))

1−α
+

|V | − k

1− α
τ1−α (11)

and let I = {u ∈ V : zu,ju = 1}. If two nodes u, v ∈ I are

connected by an edge, then by (7), (8) and (9), it follows that
(τ+Uu(Z))1−α

1−α
= (τ+Uv(Z))1−α

1−α
= τ1−α

(1−α) , which are the same

as when both u and v are not allocated a subchannel. By this

fact and by (7), it follows that:

1For simplicity, we discard the superscript n (subchannel number) in the
remaining proof.

Uα,τ (Z
′) = Uα,τ (Z), (12)

where allocation Z
′ is given as follows:

z′u,ju =

{

1, if u ∈ I ′,

0, else,
(13)

and I ′ is the independent set derived from I by excluding all

node pairs having an edge between them. Let |I ′| = k′. Then:

Uα,τ (Z
′) =

k′

(1− α)
(τ + log (3))

1−α
+

|V | − k′

1− α
τ1−α (14)

by (7), (8) and (9). By (11), (12) and (14), we get:

k′

(1− α)
(τ + log (3))

1−α
+

|V | − k′

1− α
τ1−α

≥
k

(1− α)
(τ + log (3))

1−α
+

|V | − k

1− α
τ1−α (15)

=⇒ (k′−k)
[

(τ + log (3))
1−α − τ1−α

]

≥ 0 (as α < 1)

(16)

So k′ ≥ k. Hence, necessity holds as an independent set of

size at least k exists in G.

Case (ii): α = 1:

The utility of the system under an allocation Z is calculated

by (7) for α = 1. In the generated instance of Problem 1,

we want to verify whether there exists a (feasible) allocation

Z which satisfies Uα,τ (Z) ≥ k log (τ + log(3)) + (|V | −
k) log(τ)? Our claim is that the answer is yes if and only

if an independent set of size at least k exists in G. To show

sufficiency, suppose an independent set, I , of size k′ ≥ k

exists in G. Then by (7), (8) and (9), the following allocation:

zu,ju =

{

1, if u ∈ I,

0, else,
(17)

has utility k′ log (τ + log(3)) + (|V | − k′) log(τ) ≥
k log (τ + log(3))+(|V |−k) log(τ) since k′ ≥ k, which shows

sufficiency. To show necessity, suppose that an allocation

Z = {zu,ju ∈ {0, 1} : u ∈ V } exists such that:

Uα,τ (Z) ≥ k log (τ + log(3)) + (|V | − k) log(τ), (18)

and let I = {u ∈ V : zu,ju = 1}. If two nodes u, v ∈ I are

connected by an edge, then by (7), (8) and (9) it follows that

log(τ + Uv(Z)) = log(τ + Uu(Z)) = log(τ), which are the

same as when both u and v are not allocated a subchannel.

By this fact and (7), it follows that:

Uα,τ (Z
′) = Uα,τ (Z), (19)

where allocation Z
′ is given as follows:

z′u,ju =

{

1, if u ∈ I ′,

0, else,
(20)

and I ′ is the independent set derived from I by excluding all

node pairs having an edge between them. Let |I ′| = k′. Then:

Uα,τ (Z
′) = k′ log (τ + log(3)) + (|V | − k′) log(τ) (21)

by (7), (8) and (9). By (18), (19) and (21) we get:

k′ log (τ + log(3)) + (|V | − k′) log(τ)

≥ k log (τ + log(3)) + (|V | − k) log(τ) (22)

=⇒ (k′ − k) log

(

1 +
log(3)

τ

)

≥ 0 (23)



6

So k′ ≥ k. Hence, necessity holds as an independent set of

size at least k exists in G.

Case (iii): α > 1:

The utility of the system under an allocation Z is calculated

by (7) for α > 1. In the generated instance of Problem 1,

we want to verify whether there exists a (feasible) alloca-

tion Z which satisfies Uα,τ (Z) ≥ k
(1−α) (τ + log (3))

1−α
+

|V |−k

1−α
τ1−α? Our claim is that the answer is yes if and only

if an independent set of size at least k exists in G. To show

sufficiency, suppose an independent set, I , of size k′ ≥ k

exists in G. Then by (7), (8) and (9), the following allocation:

zu,ju =

{

1, if u ∈ I,

0, else,
(24)

has utility k′

(1−α) (τ + log (3))
1−α

+ |V |−k′

1−α
τ1−α ≥

k
(1−α) (τ + log (3))

1−α
+ |V |−k

1−α
τ1−α since k′ ≥ k, which

shows sufficiency. To show necessity, suppose that an

allocation Z = {zu,ju ∈ {0, 1} : u ∈ V } exists such that:

Uα,τ (Z) ≥
k

(1 − α)
(τ + log (3))

1−α
+

|V | − k

1− α
τ1−α (25)

and let I = {u ∈ V : zu,ju = 1}. If two nodes u, v ∈ I are

connected by an edge, then by (7), (8) and (9), it follows that
(τ+Uu(Z))1−α

1−α
= (τ+Uv(Z))1−α

1−α
= τ1−α

(1−α) , which are the same

as when both u and v are not allocated a subchannel. By this

fact and by (7), it follows that:

Uα,τ (Z
′) = Uα,τ (Z), (26)

where allocation Z
′ is given as follows:

z′u,ju =

{

1, if u ∈ I ′,

0, else,
(27)

and I ′ is the independent set derived from I by excluding all

node pairs having an edge between them. Let |I ′| = k′. Then:

Uα,τ (Z
′) =

k′

(1 − α)
(τ + log (3))

1−α
+

|V | − k′

1− α
τ1−α (28)

by (7), (8) and (9). By (25), (26) and (28), we get:

k′

(1− α)
(τ + log (3))

1−α
+

|V | − k′

1− α
τ1−α

≥
k

(1− α)
(τ + log (3))

1−α
+

|V | − k

1− α
τ1−α (29)

=⇒ (k′−k)
[

(τ + log (3))
1−α − τ1−α

]

≤ 0 (as α > 1)

(30)

So k′ ≥ k. Hence, necessity holds as an independent set of

size at least k exists in G. The result follows.

B. Conditions For Polynomial Time Solvability of Problem 1

Throughout this subsection, assume that τ > 0 and Hn
i,j > 0

for all i ∈ B, j ∈ M, n ∈ N . However, note that the latter is

a mild assumption since the channel gains Hn
i,j are allowed

to be arbitrarily small.

For BS a ∈ B, MS j ∈ Ma and subchannel n ∈ N , let:

η(a, j, n) =
PHn

a,j

N0
, (31)

and

β(a, j, n) =
minb∈B\{a} H

n
b,j

Hn
a,j

. (32)

Consider the following conditions:

Condition 1:

τ < α and,

β(a, j, n) ≥ max

(

α− 1

τ − (τ+log(1+η(a,j,n)))1−α

τ−α

,
α

τ
+

1

η(a, j, n)

)

,

(33)

for all a ∈ B, j ∈ Ma, n ∈ N .

Condition 2:

α(2(α−1) − 1)

τ(α − 1)
> 1, log(1 + η(a, j, n)) ≤ τ and β(a, j, n) ≥

max

(

α− 1

τ − (τ+log(1+η(a,j,n)))1−α

τ−α

,
α(2(α−1) − 1)

τ(α − 1)
+

1

η(a, j, n)

)

,

(34)

for all a ∈ B, j ∈ Ma, n ∈ N .

Condition 3:

τ < 1 and,

β(a, j, n) ≥ max

(

1

η(a, j, n)
+

1

τ
,

1

τ log(1 + log(1+η(a,j,n))
τ

)

)

,

(35)

for all a ∈ B, j ∈ Ma, n ∈ N .

Theorem 2: For α ∈ (0, 2)\{1} (respectively, α ≥ 2,

α = 1), an optimal solution to Problem 1 can be found in

O((M+N)3) time using the algorithm in Fig. 3, if Condition 1

(respectively, Condition 2, Condition 3) is satisfied.

Now, we explain Theorem 2 and Conditions 1, 2 and 3. For a

given MS j ∈ Ma and subchannel n, “crosstalk coefficients”

are the channel gains Hn
b,j , ∀b ∈ B\{a}. For a given MS

j ∈ Ma and subchannel n, note that β(a, j, n) is the ratio of

the least crosstalk coefficient to the value of the channel gain,

Hn
a,j , from the BS, a, serving j to j. Therefore, β(a, j, n) is

the minimum value of the potential 2 interference to MS j

on subchannel n relative to the signal strength from BS a.

Conditions 1, 2 and 3 hold when β(a, j, n) is greater than a

threshold value for all a, j and n. Hence, Theorem 2 says

that Problem 1 is polynomial time solvable if the potential

interference levels are sufficiently high for all BSs, MSs and

subchannels. Moreover, the threshold interference levels in

Conditions 1, 2 and 3 vary inversely with η(a, j, n), and hence,

from (31), with the transmit power (P ) of each of the BSs.

Therefore, Conditions 1, 2 and 3 become more relaxed as the

transmit power P increases.

In a practical scenario where BSs are densely deployed in

an area (resulting in high crosstalk coefficients) and transmit

with high power, Conditions 1, 2 and 3 would be satisfied in

several of the time slots. In such a scenario, the algorithm in

2We say “potential” interference because an MS j ∈ Ma experiences
interference only when subchannel n is assigned to it and to an MS of BS
b 6= a.
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Fig. 3 can be used to find an optimal solution to Problem 1

in polynomial time.

Next, a natural question arises as to whether, for a given

value of α, there exist values of τ, η and β 3 that satisfy

the applicable condition out of Conditions 1, 2 and 3. The

answer is yes: Table I illustrates, for different values of α,

some example values of τ, η and β for which the applicable

condition out of Conditions 1, 2 and 3 is satisfied and hence

Problem 1 can be solved in polynomial time by Theorem 2.

The values in Table I have been obtained via numerical

computations using the Matlab software.

TABLE I: Example Parameter Values

α η τ β

1 [102, 103] [0.99, 1) ≥ 1.021

[0.01, 2)\{1} [102, 103]
α− k,

∀k ∈ [10−4, 10−3]
≥ 1.13

[2.7, 2.9] [30, 33]
log(1 + η) + k,

∀k ∈ [10−2, 10−1]
≥ 1.25

[3.5, 3.7] (500, 600)
log(1 + η) + k,

∀k ∈ [10−3, 10−2]
≥ 1.22

[4.4, 4.6] [790, 900]
log(1 + η) + k,

∀k ∈ [5, 5.5]
≥ 1.22

[5.3, 5.5] [810, 900]
log(1 + η) + k,

∀k ∈ [15, 16]
≥ 1.22

We provide the proof of Theorem 2 in the rest of this

subsection. We divide the proof into two cases depending

on the values of the crosstalk coefficients. Specifically, in

Section IV-B1, we assume an idealized situation wherein

all the crosstalk coefficients are ∞. Note that the crosstalk

coefficients are not ∞ in practice. However, we assume them

to be ∞ in Section IV-B1 for ease of understanding, i.e., we

assume that the following condition holds:

Condition 4: Assume that the channel gains Hn
b,j = ∞ and

Hn
a,j are finite for all a ∈ B, j ∈ Ma, n ∈ N , b 6= a.

Subsequently, in Section IV-B2, we consider the realistic case

in which all the crosstalk coefficients are finite. We prove

that if the potential interference levels are higher than the

thresholds given in Conditions 1, 2 and 3, then the optimal

solution to Problem 1 can be found in polynomial time using

the algorithm in Fig. 3. Observe that the inequalities involving

β(a, j, n) stated in Conditions 1, 2 and 3 are satisfied whenever

Condition 4 holds, but Condition 4 is a much more relaxed

condition than Conditions 1, 2 and 3.

We now introduce some terminology and notations. Con-

sider a weighted undirected graph G = (V , E), where V
(respectively, E) is the set of nodes (respectively, set of edges),

and each edge has a weight, which is a real number. Let (i, j)
denote the edge between nodes i, j ∈ V , where i 6= j. A

graph G = (V , E) is bipartite if V = V1 ∪ V2 such that

V1 ∩ V2 = ∅ and each edge in E is between a node in V1

and a node in V2 [20]. A subset Em ⊆ E is known as a

matching if no two edges in Em have a node in common [20].

The sum of the weights of the edges in a given matching Em

3 For simplicity, we have replaced η(a, j, n) and β(a, j, n) by η and β
respectively.

is known as the weight of the matching Em and is denoted

by W (Em). The problem of obtaining a matching with the

maximum weight in a bipartite graph is known as the bipartite

matching problem [20].

1) Infinite Crosstalk Coefficients:

Theorem 3: If Condition 4 is satisfied, then the optimal

solution to Problem 1 can be found in O((M + N)3) time

using the algorithm in Fig. 3.

Proof: Consider Problem 1 with Condition 4. We show

the equivalence of Problem 1 with the bipartite matching

problem. Let V1 = M (the set of MSs) and V2 = N (the

set of subchannels) in a bipartite graph. Consider an MS

j ∈ Ma ⊆ M and a subchannel n ∈ N . Then the weight

of the edge (j, n) is defined as:

W (j, n) =











log
(

τ + log
(

1 +
PHn

a,j

N0

))

, if α = 1,
(

τ+log

(

1+
PHn

a,j
N0

))1−α

1−α
, if α 6= 1.

(36)

Suppose Z1 ⊆ Z is the set of all feasible allocations in

which no subchannel n ∈ N is assigned to two or more

MSs, i.e.,
∑

i∈B yni ≤ 1, ∀n ∈ N . Let the allocation Z(Em)
corresponding to a matching, Em, in the above bipartite graph

be as follows:

zna,j =

{

1, if (j, n) ∈ Em,

0, else.
(37)

Note that Z(Em) ∈ Z1 since Em is a matching. Also, there

always exists a unique matching Em corresponding to any

Z
1 ⊆ Z1 such that Z(Em) = Z

1. Therefore, Z(Em) is a

one-to-one mapping between the set Z1 and the set of all

matchings in the above bipartite graph. Further, from (7)

and (36), it follows that the weight of a matching Em is

equal to the utility of the corresponding allocation Z(Em),
i.e., W (Em) = Uα,τ (Z(Em)). Therefore, Z(E∗

m) ∈ Z1, is the

allocation in Z1 with the highest utility if E∗
m is the matching

with maximum weight.

Now, we want to show that under Condition 4, Z(E∗
m) is

the allocation with the highest utility in Z . Note that if a

subchannel n is allocated to more than one MS in an allocation

Z ∈ Z, then the contribution to the network utility Uα,τ (Z)
by each of those MSs to which subchannel n is allocated,

will be log(τ) if α = 1 and τ1−α

1−α
if α 6= 1 by (7), (5) and

Condition 4. This contribution is equal to the contribution of

an MS to which no subchannel is assigned. Therefore, by (7),

an allocation Z
1 ∈ Z1, such that Uα,τ (Z

1) = Uα,τ (Z), can

be derived from Z by deallocating each subchannel n which is

allocated to two or more MSs in Z from all the MSs to which

it was allocated. Since Z(E∗
m) is the allocation in Z1 with the

highest utility, it follows that under Condition 4, Z(E∗
m) is the

allocation in Z with the highest utility.

Thus, if Condition 4 is satisfied, then the optimal solution

of Problem 1 is the allocation Z(E∗
m) corresponding to the

maximum weight matching E∗
m in the above bipartite graph.

The Hungarian algorithm can be used to solve the bipartite

matching problem in O(d3) time for a bipartite graph with d

nodes [34]. Hence, Problem 1 can be solved in O((M +N)3)



8

time. Finally, an algorithm to optimally solve Problem 1 when

Condition 4 holds is provided in Fig. 3.

1: Suppose M and N are the two partitions of a given bipartite graph, and for j ∈
Ma ⊆ M, n ∈ N , calculate the weight of edge (j, n) using (36).

2: Using the Hungarian algorithm, solve the bipartite matching problem for this graph

and obtain a maximum weight matching E∗
m.

3: Return the allocation zn
a,j =

{

1, if (j, n) ∈ E∗
m,

0, else.

Fig. 3: The algorithm for optimally solving Problem 1 when,

depending on the value of α, one of the Conditions 1, 2 and 3

is satisfied .

2) Finite Crosstalk Coefficients: We now consider the re-

alistic case where the channel gains Hn
i,j are finite for all

i ∈ B, j ∈ M, n ∈ N , as in practice.

To prove Theorem 2, we will start with an optimal allo-

cation Ẑ ∈ Z , and deallocate some MSs from one or more

subchannels, if necessary, to obtain an allocation Z
∗ ∈ Z1,

such that Uα,τ (Z
∗) ≥ Uα,τ (Ẑ). From this and the fact that

Ẑ is an optimal allocation, it will follow that there exists an

allocation Z
∗ ∈ Z1 that maximizes the utility in (7). The

allocation Z
∗ can be found using the algorithm provided in

Fig. 3, which will prove Theorem 2.

Now, consider two cases based on the value of α.

Case 1: α 6= 1
Let Ẑ = {zna,j : a ∈ B, j ∈ Ma, n ∈ N} ∈ Z be
an optimal allocation. For a given subchannel n ∈ N , let
(a∗(n), j∗(n)) =

argmax
a∈B,j∈Ma:z

n
a,j

=1

(

τ + log

(

1 +
PHn

a,j

P
∑

i∈B\{a}:yn
i
=1 Hn

i,j
+N0

))1−α

1− α
.

(38)

It can be observed that the (BS, MS) pair (a∗(n), j∗(n))
contributes the highest to Uα,τ (Ẑ) in the RHS of (7). Suppose

subchannel n is allocated to kn MSs in the allocation Ẑ, i.e.:

kn = |{i ∈ B : yni = 1}| . (39)

If kn ≥ 2, then the allocation Z
∗ is obtained from Ẑ by

deallocating all MSs other than j∗(n) from subchannel n 4 .

We can write Uα,τ (Ẑ)

≤
∑

n∈N

kn

(

τ + log

(

1 +
PHn

a∗(n),j∗(n)

P
∑

i∈B\{a∗(n)}:yn
i

=1 Hn
i,j∗(n)

+N0

))1−α

1− α

≤
∑

n∈N

kn

(

τ + log

(

1 +
PHn

a∗(n),j∗(n)

(kn−1)PHn
b,j∗(n)

+N0

))1−α

1− α

≤
∑

n∈N

kn

(

τ + log
(

1 + η(a∗,j∗,n)
(kn−1)η(a∗,j∗,n)β(a∗,j∗,n)+1

))1−α

1− α

(40)

where, Hn
b,j∗(n) = min

i∈B\{a∗(n)}
Hn

i,j∗(n).

4Similar deallocations of MSs from subchannels other than n are per-
formed.

In (40), the first inequality follows from (38) and the last
inequality follows from (31) and (32). Hereafter, for simplicity,
we replace η(a∗, j∗, n) and β(a∗, j∗, n) by η and β respec-
tively. We want to show that:

∑

n∈N

kn

(

τ + log
(

1 + η

(kn−1)ηβ+1

))1−α

1− α

≤
∑

n∈N

[

(τ + log (1 + η))1−α

1− α
+ (kn − 1)

τ 1−α

1− α

]

= Uα,τ (Z
∗),

(41)

where the equality follows from the definition of Z∗. Let

f(x) = x

(

τ + log
(

1 + η
(x−1)ηβ+1

))1−α

1− α
− (x− 1)

τ1−α

1− α
.

(42)

To prove (41), it suffices to show that f(x) ≤ f(1) ∀ x ≥ 1.

Lemma 1: Let η, β and τ be positive numbers such

that for α ∈ (0, 2)\{1} (respectively, α ≥ 2), Condition 1

(respectively, Condition 2) is satisfied and f(x) be as in (42).

Then f(x) ≤ f(1) ∀ x ≥ 1.

Proof: The proof is relegated to Appendix A.

The inequality in (41) follows from Lemma 1. By (40) and
(41), we can write:

Uα,τ (Ẑ) ≤
∑

n∈N

[

(τ + log (1 + η))1−α

1− α
+ (kn − 1)

τ 1−α

1− α

]

= Uα,τ (Z
∗). (43)

Hence, from the fact that Ẑ is an optimal allocation and (43),

it follows that Z∗ is also an optimal solution of Problem 1.

Note that Z∗ ∈ Z1. Also, recall from the proof of Theorem 3

that Z(E∗
m) is the allocation in Z1 with the highest utility.

Thus, Z(E∗
m) is also an optimal solution of Problem 1. Finally,

recall that Z(E∗
m) can be found by finding the maximum

weight matching E∗
m in the bipartite graph defined in the

proof of Theorem 3 and finding the corresponding allocation.

Hence, the algorithm in Fig. 3 can be used to optimally solve

Problem 1 in O((M +N)3) time when Condition 1 holds for

α ∈ [0, 2)\{1} and Condition 2 holds for α ≥ 2.

Case 2: α = 1
Let Ẑ = {zna,j : a ∈ B, j ∈ Ma, n ∈ N} ∈ Z be
an optimal allocation. For a given subchannel n ∈ N , let
(a∗(n), j∗(n)) =

argmax
a∈B,j∈Ma:z

n
a,j

=1
log

(

τ + log

(

1 +
PHn

a,j

P
∑

i∈B\{a}:yn
i
=1 H

n
i,j +N0

))

.

(44)

It can be observed that the (BS, MS) pair (a∗(n), j∗(n))
contributes the highest to Uα,τ (Ẑ) in the RHS of (7). Suppose

subchannel n is allocated to kn MSs in the allocation Ẑ, i.e.:

kn = |{i ∈ B : yni = 1}| . (45)

If kn ≥ 2, then the allocation Z
∗ is obtained from Ẑ by

deallocating all MSs other than j∗(n) from subchannel n 4.
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We can write, Uα,τ (Ẑ)

≤
∑

n∈N

kn log

(

τ + log

(

1 +
PHn

a∗(n),j∗(n)

P
∑

i∈B\{a∗(n)}:yn
i
=1 H

n
i,j∗(n) +N0

))

≤
∑

n∈N

kn log

(

τ + log

(

1 +
PHn

a∗(n),j∗(n)

(kn − 1)PHn
b,j∗(n) +N0

))

≤
∑

n∈N

kn log

(

τ + log

(

1 +
η(a∗, j∗, n)

(kn − 1)η(a∗, j∗, n)β(a∗, j∗, n) + 1

))

(46)

where, Hn
b,j∗(n) = min

i∈B\{a∗(n)}
Hn

i,j∗(n).

In (46), the first inequality follows from (44) and the last

inequality follows from (31) and (32). Hereafter, for simplicity,

we replace η(a∗, j∗, n) and β(a∗, j∗, n) by η and β respec-

tively. We want to show that

∑

n∈N

kn log

(

τ + log

(

1 +
η

(kn − 1)ηβ + 1

))

≤
∑

n∈N

[log (τ + log (1 + η)) + (kn − 1) log τ ] = Uα,τ (Z
∗),

(47)

where the equality follows from the definition of Z∗. Let

f1(x) = x log

(

τ + log

(

1 +
η

(x − 1)ηβ + 1

))

−(x−1) log τ.

(48)

To prove (47), it suffices to show that f1(x) ≤ f1(1) ∀ x ≥ 1.

Lemma 2: Let η, β and τ be positive numbers such that for

α = 1, Condition 3 is satisfied and f1(x) be as in (48). Then

f1(x) ≤ f1(1) ∀ x ≥ 1.

Proof: The proof is relegated to Appendix B.

The inequality in (47) follows from Lemma 2. By (46)

and (47), we can write:

Uα,τ (Ẑ) ≤
∑

n∈N

log (τ + log (1 + η)) + (kn − 1) log τ

= Uα,τ (Z
∗). (49)

Hence, from the fact that Ẑ is an optimal allocation and (49),

it follows that Z∗ is also an optimal solution of Problem 1.

Note that Z∗ ∈ Z1. Also, recall from the proof of Theorem 3

that Z(E∗
m) is the allocation in Z1 with the highest utility.

Thus, Z(E∗
m) is also an optimal solution of Problem 1. Finally,

recall that Z(E∗
m) can be found by finding the maximum

weight matching E∗
m in the bipartite graph defined in the

proof of Theorem 3 and finding the corresponding allocation.

Hence, the algorithm in Fig. 3 can be used to optimally solve

Problem 1 in O((M +N)3) time when Condition 3 holds for

α = 1. This completes the proof of Theorem 2.

V. τ −α−FAIR DISTRIBUTED SUBCHANNEL ALLOCATION

ALGORITHM

To approximately solve the NP-Complete Problem 1 defined

in Section III, we propose a simple, distributed subchannel

allocation algorithm in this section. This algorithm is a gen-

eralization of an algorithm proposed in our prior work [7] to

solve the ICIC with fixed transmit power problem with the

objective of maximizing the sum of throughputs of all the

MSs in the network.

Let Ba ⊆ B be the set of neighboring BSs of BS a. Every

BS a is directly connected to each of its neighboring BSs via

high-speed links; these links are used to exchange information

during the algorithm execution. For example in LTE systems,

X2 interfaces [2] are used to connect neighboring BSs.

The proposed algorithm proceeds as explained below:

During the initialization phase, the channel gain values are

estimated as discussed in Section III. Each BS a ∈ B obtains

channel gain information {Hn
b,j : j ∈ Ma, b ∈ Ba, n ∈ N}

from its neighboring BSs in Ba. In practice, each BS has a

small number of neighboring BSs; therefore, the amount of

information exchanged would be small.

After the initialization phase, the algorithm executes in

iterations and each BS a ∈ B updates the variables {ẑna,j : j ∈
Ma, n ∈ N}, ŷna and ŷnb , b ∈ Ba after each iteration. Note that

the temporary values of zna,j and yna , specified in Section III,

are contained in the variables ẑna,j and ŷna respectively after

each iteration. Each BS a initializes ẑna,j = 0, ŷna = 0 and

ŷnb = 0 for all j ∈ Ma, n ∈ N , b ∈ Ba at the beginning of

the first iteration, and in subsequent iterations, if MS j ∈ Ma

is allocated subchannel n, then BS a assigns ẑna,j = 1 and

correspondingly calculates the variable ŷna =
∑

j∈Ma
ẑna,j .

The following operations are executed during each iteration

r = 1, 2, 3, . . .:

(1) At the beginning of an iteration r, each BS a ∈ B
computes and conveys pa to all the BSs in Ba. For a BS
a, pa is defined as:

max
j∈Ma:ẑ

m
a,j

=0 ∀m∈N
max

n∈N :ŷn
a=0















log









1 +
PHn

a,j

P
∑

b∈Ba

H
n
b,j ŷ

n
b +N0























(50)

(2) Let j and n be the maximizers in (50). If pa ≥ pb ∀b ∈ Ba,

then the MS j ∈ Ma is assigned the subchannel n, and

BS a updates both the variables ẑna,j and ŷna to 1. Note

that it is possible that multiple BSs allocate subchannels

to their associated MS simultaneously in an iteration.

(3) Each BS a ∈ B conveys the information of the subchannel,

if any, allocated to one of its associated MSs in Step 2,

say n, to all the BSs in Ba and updates the values of

ŷnb ∀b ∈ Ba, n ∈ N .

Each BS a executes the above steps until at least one of the

following conditions is fulfilled:

(i) All the MSs in Ma are allocated subchannels.

(ii) All the subchannels in N have been allocated to the MSs

in Ma.

(iii) pa < p0, where p0 is given by (52) and (53) in

Section VI.

As soon as the algorithm terminates at BS a, its allocation is

obtained using zna,j = ẑna,j, ∀j ∈ Ma and n ∈ N .

During each iteration, the distributed algorithm adopts a

greedy approach in (50) and step 2 to choose (MS, subchannel)

pairs with high throughputs. From (50) and the rule to update
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the variables (ŷni : i ∈ B, n ∈ N ), pa either decreases or

remains unchanged for each BS a ∈ B during each iteration.

Also from (52) and (53), the higher the value of α, the lower

the value of p0. By condition (iii) above for termination, when

α is high, the distributed algorithm operates for a longer dura-

tion and hence subchannels are allocated to more MSs, which

leads to high interference. Due to the increased interference,

the total throughput is lower (see Sections VI-B and VI-C),

but the allocation is fairer since resources (subchannels) are

allocated to more MSs. In summary, condition (iii) above

for termination ensures that higher the value of α, greater

the degree of fairness and lower the total throughput of the

allocation found by the above algorithm. This is confirmed by

the simulation results in Section VI.

VI. SIMULATIONS

In this section, we provide simulation results to investi-

gate the trade-off between the total throughput and fairness

achieved using the exhaustive search algorithm and the pro-

posed τ − α−fair distributed subchannel allocation algorithm

in Section V.

We consider the following scenario throughout our simula-

tions. Suppose that K BSs and M MSs are placed uniformly

at random in a square area of dimension 1×1 unit2. However,

any two BSs must be at least dmin distance apart from each

other, where dmin is a parameter. Let dmin = 0.1 units and

suppose all the BSs which are within a radius of 0.4 units from

BS a are considered as the neighboring BSs of a (i.e., in the

set Ba). Further, suppose the MS-BS association is distance

dependent, i.e., each MS associates with the BS that is nearest

to it.

To account for the effects of fast fading, shadow fading

and the path loss phenomenon, we consider that the channel

gains are given by Hn
i,j =

kSijX
n
ij

d
γ
ij

, where dij denotes the

distance between BS i and MS j, γ denotes the path loss

exponent which can take values in the range (2, 4) and k

is a constant [32]. To model the effect of shadow fading, a

log-normal random variable Sij is considered. For distinct

pairs (i, j), Sij are independent and identically distributed (iid)

random variables. Similarly, Rayleigh distributed iid random

variables Xn
ij are considered to model the effect of fast fading.

Next, we consider Jain’s fairness index as a fairness metric

which is defined as follows [14]:

FI =
(
∑M

j=1 Uj(Z))
2

M(
∑M

j=1 U
2
j (Z))

, (51)

where Uj(Z) is given by (5). The value of FI lies between

0 and 1. Also, it increases with the degree of fairness of

the distribution of throughput; if all MSs get exactly equal

throughput, it takes value 1 and it equals n
M

when exactly

n out of M MSs have equal throughput and the remaining

(M − n) MSs have 0 throughput [14]. See [14] for further

properties of the fairness index.
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Fig. 4: The figure plots the total throughput and fairness index

(FI) values obtained by exhaustive search over all possible

subchannel allocations with α for different K,N and M .
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Fig. 5: The figure (a) (respectively, (b)) plots the total through-

put and fairness index (FI) values obtained by exhaustive

search over all possible subchannel allocations with α (re-

spectively, τ ) for different K,N and M .

A. Trade-off Between the Total Throughput and Fairness Index

Under the Exhaustive Search Algorithm and Selection of τ

First, for different values of α we found the allocation that

maximizes the system utility function in (7) by exhaustive

search over all possible combinations of subchannel allocation

to all the MSs of the system. Then, the total throughput and

fairness index FI were calculated for the obtained allocation

using (4) and (51) respectively. Figs. 4 and 5(a) plot the

variation of the total throughput and fairness index FI with

α, each for different values of parameters K,N and M and

for three different values of τ . In Figs. 4 and 5(a), the total

throughput decreases and fairness index FI increases with α.

Next, we address the question of how the value of τ should

be selected. Figs. 5(b) and 6 show the variation of the total

throughput and fairness index FI with τ , for different values of

the parameters K,N and M and for three different values of α.

In Figs. 5(b) and 6, the total throughput first increases and then

approximately saturates as τ increases. Also, in most cases

in Figs. 5(b) and 6, the fairness index FI slightly decreases

as τ increases. Similar to the trends in Figs. 4 and 5(a), for

fixed τ , the total throughput decreases and fairness index FI

For all the plots in Figs. 4 to 10, each data point was obtained by averaging
across 50 runs with different random seeds.

Note that for all the plots in Figs. 4, 5 and 6, only small values of the
parameters K,N and M were used since it is computationally prohibitive to
execute the exhaustive search algorithm with large values of K,N and M .



11

0 5 10 15 20

66

68

70

72

τ

T
o

ta
l 
  
  

T
h

r
o

u
g

h
p

u
t

 

 

0 5 10 15 20
0.54

0.56

0.58

τ

F
a

ir
n

e
s

s
In

d
e

x
 (

F
I)

 

 

α = 0.5, α = 1.5, α = 5

α = 0.5, α = 1.5, α = 5

(a) For K = 2, N = 4,M = 7

0 5 10 15 20
65

70

75

τ

T
o

ta
l 
  
  

T
h

ro
u

g
h

p
u

t

 

 

0 5 10 15 20
0.34

0.35

0.36

τ

F
a

ir
n

e
s

s
In

d
e

x
 (

F
I)

 

 

α = 0.5, α = 1.5, α = 5

α = 0.5, α = 1.5, α = 5

(b) For K = 3, N = 3,M = 11

Fig. 6: The figure plots the total throughput and fairness index

(FI) values obtained by exhaustive search over all possible

subchannel allocations versus τ for different K,N and M .
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Fig. 7: The figure (a) (respectively, (b)) plots the total through-

put under the distributed τ − α−fair algorithm versus p0 for

different K (respectively, N ).

increases with α. Figs. 5(b) and 6 show that the values of

total throughput and fairness index FI are not very sensitive

to the value of τ . Nevertheless, the figure shows that the choice

τ ∈ [8, 9] results in large total throughput and large FI. From

Figs. 4, 5 and 6, it can be concluded that by solving Problem 1

with a fixed value τ > 0 and different values of α ∈ [0,∞),
allocations that achieve various trade-offs between the total

throughput and degree of fairness can be obtained.

B. To Obtain the Value of p0 that Maximizes the Total

Throughput

For the distributed τ − α−fair subchannel allocation al-

gorithm, we want to first find the value of the parameter

p0 (see the condition (iii) for termination of the algorithm

in Section V), say p∗0, that results in the maximum total

throughput under the allocation found by the algorithm. The

value p∗0 will later be used in Section VI-C to investigate

as to how p0 should be selected as a function of α such

that the higher the value of α, the lower the total throughput

and higher the degree of fairness under the allocation found

by the algorithm. The variation of the total throughput with

the parameter p0 is depicted in Figs. 7(a), 7(b) and 8(a)

for different values of K,N and M respectively. In Figs. 7

and 8(a), the total throughput is maximized for medium values

of p0. Intuitively, this is because for too low values of p0, the

proposed algorithm allocates subchannels to a large number

of MSs (see condition (iii) for termination of the algorithm in

Section V), which results in high interference and low total

throughput. Similarly, for too high values of p0 the algorithm

does not allocate subchannels to enough of MSs, which results

in low total throughput. Therefore, the total throughput first
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Fig. 8: The figure (a) (respectively, (b)) plots the total through-

put (respectively, fairness index (FI)) under the distributed

τ − α−fair algorithm versus p0 for different M .
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Fig. 9: The figure (a) (respectively, (b)) plots fairness index

(FI) values obtained by exhaustive search over all possible

subchannel allocations versus p0 for different K (respectively,

N ).

increases then decreases as p0 increases. Figs. 8(b), 9(a)

and 9(b) present the variation of FI with p0 for different values

of M,K and N respectively. Figs. 8(b) and 9 show that the

FI decreases as p0 increases. Intuitively, this is because as

p0 decreases, the algorithm runs for a longer duration and

allocates subchannels to more number of MSs which increases

fairness. After extensive simulations, we empirically found

that the value of the parameter p0 (say p∗0) which gives close

to maximum total throughput in terms of the parameters K,M

and N is given by the following expression:

p∗0 =

{

1 + M
2(NK) , if M ≤ K ×N,

1 + log(NK)
2 logM

, otherwise.
(52)

C. Selection of the Value of p0 as a Function of α

From Figs. 7, 8 and 9, it can be concluded that there is a

tradeoff between the total throughput and degree of fairness

when the parameter p0 is in the range [0, p∗0]. In particular,

within the range p0 ∈ [0, p∗0], the total throughput (respectively,

fairness) is maximized at p0 = p∗0 (respectively, p0 = 0).

However, recall that α = 0 (respectively, α = ∞) corresponds

to maximum total throughput (respectively, fairness) and min-

imum fairness (respectively, total throughput). This motivates

us to set p0, in terms of α, as:

p0 =
1

1
p∗
0
+ α

. (53)

In summary, the choice of p0 in (53) ensures that as α

increases from 0 to ∞, the total throughput (respectively,

degree of fairness) of the allocation found using the algorithm

described in Section V decreases (respectively, increases).
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D. Performance Evaluation of the Proposed Distributed Al-

gorithm

For different sets of values of K,M and N and for different

values of α, p0 was computed using (52) and (53). Using the

calculated value of p0, the proposed distributed τ − α−fair

subchannel allocation algorithm was run and a subchannel

allocation was obtained. The total throughput and FI under

the obtained allocation were calculated using (4) and (51)

respectively. Figs. 10(a), 10(b) and 10(c) depict the variation of

the total throughput and FI with α for different values of K,N

and M respectively. In Fig. 10, the total throughput decreases

and fairness index FI increases as α increases. Therefore, it

can be verified from Fig. 10 that the distributed τ − α−fair

subchannel allocation algorithm proposed in Section V and

the expressions for p∗0 and p0 in (52) and (53) provide the

required trade-off between the total throughput and degree of

fairness.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the concept of τ −α−fairness

in the context of the ICIC with fixed transmit power problem

by modifying the concept of α−fairness. The concept of

τ − α−fairness allows us to achieve arbitrary trade-offs be-

tween the total throughput and degree of fairness by selecting

an appropriate value of α in [0,∞). We showed that for

every α ∈ [0,∞) and every τ > 0, the problem of finding a

τ − α−fair allocation is NP-Complete. Next, we showed that

for every α ∈ [0,∞), there exist thresholds such that if the

potential interference levels experienced by each MS on every

subchannel are above the threshold values, then the problem

can be optimally solved in polynomial time by reducing it

to the bipartite graph matching problem. Also, we proposed

a simple, distributed subchannel allocation algorithm for the

ICIC problem, which is flexible, requires a small amount of

time to operate, and requires information exchange among

only neighboring BSs. We investigated via simulations as to

how the algorithm parameters should be selected so as to

achieve any desired trade-off between the total throughput

and fairness. Our analytical results provide insight into the

structure of the ICIC with fixed transmit power problem, with

the objective of achieving arbitrary throughput-fairness trade-

offs, which would be useful to future work on the design of

approximation algorithms with a provable approximation ratio

for the problem.

APPENDIX

A. Proof of Lemma 1: First, we will show that the

function f(x) is quasi-convex on the domain x ≥ 1.

Property 1: A function Q(.) is quasi-convex if Q′′(z) > 0
whenever Q′(z) = 0 [35].

Let

y = (x− 1)β +
1

η
. (54)

Then,

f(x) = g(y), (55)

where g(y) =

(

y

β
+ 1−

1

ηβ

)

(

τ + log
(

1 + 1
y

))1−α

1− α
− (

y

β
−

1

ηβ
)
τ1−α

1− α
.

Let p =
(

τ + log
(

1 + 1
y

))

. Then,

g′(y) =
1

β

(

p1−α

1− α
−

(y + β − 1
η
) (p)−α

y(y + 1)
−

τ1−α

1− α

)

. (56)

g′(y) = 0 ⇔ y + β −
1

η
=

y(y + 1)(p− pατ1−α)

1− α
. (57)

Further, g′′(y)

=
1

βy(y + 1)pα

(

−2 +
y + β − 1

η

y(y + 1)pα
(

(2y + 1)pα − αpα−1
)

)

So g′′(y) > 0
⇔ py(2(β − 1

η
)− 1)− α(y + β − 1

η
) + p(β − 1

η
)) > 0

Substituting from (57) in the above inequality, we get:

py(2(β − 1
η
)− 1)− αy(y + 1)p−pατ1−α

1−α
+ p(β − 1

η
)) > 0

⇔ y(2(β−
1

η
)−1)−αy(y+1)

1−

(

1 +
log(1+ 1

y
)

τ

)α−1

1− α
+(β−

1

η
) > 0

(58)

Now, we find sufficient conditions for (58) to hold for three

different values of α:

(a) α < 1 :
Because (1 + x)r ≥ 1 + rx ∀x ≥ −1, r ∈ R\(0, 1) [36], a

sufficient condition for (58) to hold is

y(2(β − 1
η
) − 1) − α

y(y+1)
1−α

[1 − {1 + (α − 1)
log(1+ 1

y
)

τ
}] +

(β − 1
η
)) > 0.

Because log(1 + x) ≤ x ∀x ≥ −1 [37], a sufficient condition

for the above inequality to hold is

yτ(2(β − 1
η
)− 1)− α(y + 1) + τ(β − 1

η
)) > 0.

⇔ y(2τ(β − 1
η
)− τ − α)− α+ τ(β − 1

η
)) > 0.

A sufficient condition for the above inequality to hold is

β ≥
α

τ
+

1

η
and τ < α. (59)

Hence, when (59) holds and α < 1, then g′′(y) > 0 when

g′(y) = 0.

(b) 1 < α < 2 :
From (58),

y(2(β− 1
η
)−1)+αy(y+1)

1−

(

1+
log(1+ 1

y
)

τ

)α−1

α−1 +(β− 1
η
) > 0.

Because (1 + x)r ≤ 1 + rx ∀x ≥ −1, r ∈ (0, 1) [36], a

sufficient condition for the above inequality to hold is

y(2(β− 1
η
)− 1)+α

y(y+1)
α−1 [1−{1+(α− 1)

log(1+ 1
y
)

τ
}]+ (β−

1
η
)) > 0.

Because log(1 + x) ≤ x ∀x ≥ −1 [37], a sufficient condition

for the above inequality to hold is

yτ(2(β − 1
η
)− 1)− α(y + 1) + τ(β − 1

η
)) > 0

⇔ y(2τ(β − 1
η
)− τ − α)− α+ τ(β − 1

η
)) > 0.

A sufficient condition for the above inequality to hold is

β ≥
α

τ
+

1

η
and τ < α,
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Fig. 10: The figure (a) (respectively, (b) and (c)) plots the total throughput and fairness index under the distributed τ −α−fair

algorithm versus α for different values of K (respectively, N and M ).

which is the same as (59). Hence, when (59) holds and 1 <

α < 2, then g′′(y) > 0 when g′(y) = 0.

(c) α ≥ 2 :
From (58),

y(2(β − 1
η
)− 1) + αy(y + 1)

1−

(

1+
log(1+ 1

y
)

τ

)α−1

α−1

+(β − 1
η
) > 0, (60)

because (1 + x)r ≤ 1 + (2r − 1)x ∀x ∈ [0, 1], r ∈
R\(0, 1) [36].

Now,

0 ≤ log(1 + η) ≤ τ ⇒ log(1 +
1

y
) ≤ τ (since y ≥

1

η
). (61)

Next, if (61) holds, a sufficient condition for (60) to hold is

y(2(β− 1
η
)− 1)+αy(y+1)

1−

(

1+(2(α−1)−1)
log(1+ 1

y
)

τ

)

α−1 +(β−
1
η
) > 0

Using the fact that log(1+x) ≤ x ∀x ≥ −1 [37], a sufficient

condition for the above inequality to hold is

yτ
(

2(β − 1
η
)− 1

)

− α(y+1)(2(α−1)−1)
α−1 + τ(β − 1

η
) > 0

⇔ y
(

2τ(β − 1
η
)− τ − α(2(α−1)−1)

α−1

)

− α(2(α−1)−1)
α−1 + τ(β −

1
η
) > 0.

The above inequality holds if the following two inequalities

hold:

β −
1

η
>

α(2(α−1) − 1)

τ(α− 1)
(62)

and 2τ(β − 1
η
)− τ − α(2(α−1)−1)

α−1 > 0.

Using (62), a sufficient condition for the above inequality to

hold is

2τ α(2(α−1)−1)
τ(α−1) − τ − α(2(α−1)−1)

α−1 > 0.

⇔ α(2(α−1)−1)
τ(α−1) > 1. (63)

Hence, when (61), (62) and (63) hold and α ≥ 2, then g′′(y) >
0 when g′(y) = 0. Therefore, it follows from Property 1 that

g(.) is quasi-convex when (59) holds (respectively, (61), (62)

and (63) hold) and α ∈ [0, 2)\{1} (respectively, α ≥ 2).

Now, it follows from (54) and (55) that f ′(x) = βg′(y) and

f ′′(x) = β2g′′(y). Therefore, f(.) also satisfies the condition

in Property 1 whenever g(.) satisfies it. Hence, f(.) is quasi-

convex when (59) holds (respectively, (61), (62) and (63) hold)

and α ∈ [0, 2)\{1} (respectively, α ≥ 2).

Also, limx→∞ f(x)

= lim
x→∞

τ 1−α

1− α






x



1 +
log
(

1 + η

(x−1)ηβ+1

)

τ





1−α

− (x− 1)







= lim
x→∞

τ1−α

1− α













(

(

1 +
log(1+ η

(x−1)ηβ+1 )
τ

)1−α

− 1

)

1
x

+ 1













(64)

Using L’Hopital’s rule,

lim
x→∞

f(x) =
τ−α(1 + βτ − α)

β(1 − α)
. (65)

Now, let

β >
1− α

(τ+log(1+η))1−α

τ−α − τ
. (66)

From (65) and (66), it is easy to show that for α ∈ [0,∞)\{1}:

lim
x→∞

f(x) < f(1). (67)

Now, consider the sublevel set:

S = {x > 1|f(x) < f(1)}.

By (67), there exists x0 > 1 such that x ∈ S for all

x > x0. Also, clearly 1 ∈ S. Since f(·) is quasi-convex,

the set S is convex [35]; so x ∈ S for all x > 1. That

is, when (61), (62), (63) and (66) hold (respectively, (59)

and (66) hold) for α ≥ 2 (respectively, α ∈ [0, 2)\{1}), then

f(x) < f(1) for all x > 1 and the result follows.

B. Proof of Lemma 2:

First, we will show that the function f1(x) is quasi-convex

on the domain x ≥ 1. Let

y = (x− 1)β +
1

η
. (68)

Then,

f1(x) = g1(y). (69)



14

where g1(y) =
(

y

β
+ 1−

1

ηβ

)

log

(

τ + log

(

1 +
1

y

))

− (
y

β
−

1

ηβ
) log τ.

Now, g′1(y) =
1
β

[

log p−
y+β− 1

η

y(y+1)p − log τ
]

,

where, p =
(

τ + log
(

1 + 1
y

))

.

g′1(y) = 0 ⇔ y + β −
1

η
= y(y + 1)p log

p

τ
. (70)

Now, g′′1 (y)

= 1
β

[

− 1
y(y+1)p −

(

y(y+1)p−(y+β− 1
η
)((2y+1)p−1)

(y(y+1)p)2

)]

=
1

β(y(y + 1)p)2
(−yp− y+2yp(β−

1

η
)+ (p− 1)(β−

1

η
)).

So g′′1 (y) > 0
⇔ py(2(β − 1

η
)− 1)− (y + β − 1

η
) + p(β − 1

η
)) > 0.

Substituting from (70) in the above inequality, we get:

py(2(β− 1
η
)−1)−y(y+1)p log(1+

log(1+ 1
y
)

τ
)+p(β− 1

η
)) > 0

As log(1 + x) ≤ x ∀x ≥ −1 [37], a sufficient condition for

the above inequality to hold is

y(2(β − 1
η
)− 1)− y(y + 1) 1

yτ
+ (β − 1

η
)) > 0.

⇔ y(2τ(β − 1
η
)− 1− τ) − 1 + τ(β − 1

η
)) > 0.

A sufficient condition for the above inequality to hold is

β ≥
1

τ
+

1

η
and τ < 1. (71)

Hence, under the condition in (71), g′′1 (y) > 0 when g′1(y) = 0
for α = 1. Therefore, it follows from Property 1 that g1(.) is

quasi-convex.

Now, it follows from (68) and (69) that f ′
1(x) = βg′1(y) and

f ′′
1 (x) = β2g′′1 (y). Therefore, f1(.) also satisfies the condition

in Property 1 whenever g1(.) satisfies it. Hence, f1(.) is quasi-

convex when (71) holds.

Also, limx→∞ f1(x)

= lim
x→∞

x log

[

τ

(

1 +
log(1 + η

(x−1)ηβ+1 )

τ

)]

−x log τ+log τ

= lim
x→∞

x log

(

1 +
log(1 + η

(x−1)ηβ+1)

τ

)

+ log τ

= lim
x→∞

log
(

1 +
log(1+ η

(x−1)ηβ+1
)

τ

)

1
x

+ log τ. (72)

Using L’Hopital’s rule,

lim
x→∞

f1(x) =
1

βτ
+ log τ. (73)

Now, let

β >
1

τ log(1 + log(1+η)
τ

)
. (74)

From (73) and (74), it is easy to show that

lim
x→∞

f1(x) < f1(1). (75)

Now, consider the sublevel set:

S = {x > 1|f1(x) < f1(1)}.

By (75), there exists x0 > 1 such that x ∈ S for all x > x0.

Also, clearly 1 ∈ S. Since f1(·) is quasi-convex, the set S

is convex [35]; so x ∈ S for all x > 1. That is, when (71)

and (74) hold, then f1(x) < f1(1) for all x > 1 and the result

follows.
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