Skip to main content
Log in

Method of sensitive data mining based on Pan-Bull algebra

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to improve the transmission stability of sensor networks, a sensitive data mining method based on Pan Boolean algebra is proposed. According to the output correctness, reliability and operation efficiency of wireless sensor network, this paper analyzes the characteristics of sensitive data, extracts and clusters the associated features of sensitive data, establishes the information clustering model of sensitive data in sensor network, and detects the fuzzy factor of sensitive data in sensor network with grid block clustering method, The Pan Boolean algebra analysis model is used to realize the hybrid deep learning of sensor network sensitive data detection and realize the optimization of sensor network sensitive data mining. The simulation results show that this method has high precision in mining sensitive data of WSN, and improves the reliability of WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fakhar, M., Mahyarinia, M. R., & Zafarani, J. (2018). On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. European Journal of Operational Research, 265(1), 39–48.

    Article  MathSciNet  Google Scholar 

  2. Sun, X. K., Li, X. B., Long, X. J., et al. (2017). On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization. Pacific Journal of Optimization, 13(4), 621–643.

    MathSciNet  MATH  Google Scholar 

  3. Han, J. H., Yuan, J. X., Wei, X., & Lu, Y. (2019). Pedestrian visual positioning algorithm for underground roadway based on deep learning. Journal of Computer Applications, 39(3), 688–694.

    Google Scholar 

  4. Yu, Z., Li, L., Liu, J., et al. (2015). Adaptive noise immune cluster ensemble using affinity propagation. IEEE Transactions on Knowledge and Data Engineering, 27(12), 3176–3189.

    Article  Google Scholar 

  5. Huang, D., Lai, J., & Wang, C. (2015). Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis. Neurocomputing, 170, 240–250.

    Article  Google Scholar 

  6. Yang, Y. (2008). Elements of information theory. Journal of the American Statistical Association, 103(3), 429–429.

    Article  Google Scholar 

  7. Iam-On, N., Boongoen, T., Garrett, S., et al. (2011). A link-based approach to the cluster ensemble problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2396–2409.

    Article  Google Scholar 

  8. Xu, J., Miao, D., Zhang, Y., et al. (2017). A three-way decisions model with probabilistic rough sets for stream computing. International Journal of Approximate Reasoning, 88, 1–22.

    Article  MathSciNet  Google Scholar 

  9. Miao, D. Q., Xu, F. F., Yao, Y. Y., et al. (2012). Set-theoretic formulation of granular computing. Chinese Journal of Computers, 35(2), 351–363.

    Article  MathSciNet  Google Scholar 

  10. Abualigah, L. M., Khader, A. T., Al-Betar, M. A., et al. (2017). Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Systems with Applications, 84(C), 24–36.

    Article  Google Scholar 

  11. Huang, D., Wang, C., & Lai, J. (2016). Locally weighted ensemble clustering. IEEE Transactions on Cybernetics, 48(5), 1460–1473.

    Article  Google Scholar 

  12. Al-Hussein, A., & Haldar, A. (2015). Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems. Structural Control and Health Monitoring, 23(1), 156–175.

    Article  Google Scholar 

  13. Liu, Y. L., Liu, J., & Liu, J. N. (2013). Research on composite inversion of dynamic loads and structural parameters based on sub-structure analysis. Journal of Mechanical Strength, 35(5), 553–558.

    Google Scholar 

  14. Arbabi, A., Horie, Y., Ball, A. J., et al. (2015). Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 6(5), 69–74.

    Google Scholar 

  15. Cao, B., Zhao, J., Gu, Y., Ling, Y., & Ma, X. (2020). Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evolution Computer, 53, 100626.

    Article  Google Scholar 

  16. Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z., & Guan, Z. (2019). A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Transactions Image Processing, 28(11), 5663–5678.

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Wu, C., Wu, G., & Wang, X. (2015). A novel differential search algorithm and applications for structure design. Applied Mathematics and Computation, 268, 246–269.

    Article  Google Scholar 

  18. Arbabi, E., Arbabi, A., Kamali, S. M., et al. (2016). Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3(6), 628–633.

    Article  Google Scholar 

  19. Lv, Z., & Kumar, N. (2020). Software defined solutions for sensors in 6G/IoE. Computer Communications, 153, 42–47.

    Article  Google Scholar 

  20. Lv, Z., & Song, H. (2020). Mobile internet of things under data physical fusion technology. IEEE Internet of Things, 7(5), 4616–4624.

    Article  Google Scholar 

  21. Han, J. L. (2018). Research on interest classification of online shopping users based on data mining. Computer Simulation, 35(7), 23–29.

    Google Scholar 

  22. Gao, W., & Wang, W. F. (2017). The fifth geometric-arithmetic index of bridge graph and carbon nanocones. Journal of Difference Equations and Applications, 23(1-2SI), 100–109.

    Article  MathSciNet  Google Scholar 

  23. Ni, T., Chang, H., Song, T., Xu, Q., Huang, Z., Liang, H., Yan, A., & Wen, X. (2019). Non-intrusive online distributed pulse shrinking based interconnect testing in 2.5 DIC. IEEE Transactions on Circuits and Systems II: Express Briefs, 1.

  24. Melicherová, M., Ondrišová, M., & Šušol, J. (2021). Bibliometrics versus altmetrics: Researchers’ attitudes in Slovakia. Iberoamerican Journal of Science Measurement and Communication, 1(1), 002.

    Article  Google Scholar 

  25. Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’ anjiang River in Huangshan, China. International Journal of Environmental Research and Public Health, 17(8), 2942.

    Article  Google Scholar 

  26. Gao, W., et al. (2017). Ontology learning algorithm for similarity measuring and ontology mapping using linear programming. Journal of Intelligent & Fuzzy Systems, 33(5), 3153–3163.

    Article  Google Scholar 

  27. Qureshi, S., & Atangana, A. (2019). Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Physica A-Statistical Mechanics and Its Applications, 526, 121127.

    Article  MathSciNet  Google Scholar 

  28. Zhu, J., Shi, Q., Wu, P., Sheng, Z., & Wang X. (2018). Complexity analysis of prefabrication contractors, dynamic price competition in mega projects with different competition strategies. Complexity, 1–9.

  29. Zhu, J., Wu, P., Chen, M., Kim, M. J., Wang, X., & Fang, T. (2020). Automatically processing IFC clipping representation for BIM and GIS integration at the process level. Applied Sciences, 10(6), 2009.

    Article  Google Scholar 

  30. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., Zhang, R., Wang, B., Huang, L., & Chen, Q. (2020). Transport of intensity equation: A tutorial. Optics and Lasers in Engineering, 135, 106187.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijin Lin.

Ethics declarations

Conflicts of interest

No conflict of interest exits in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., He, Y. & Xu, M. Method of sensitive data mining based on Pan-Bull algebra. Wireless Netw 28, 2733–2741 (2022). https://doi.org/10.1007/s11276-021-02725-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02725-9

Keywords

Navigation