Skip to main content
Log in

An underwater localization scheme for sparse sensing acoustic positioning in stratified and perturbed UASNs

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

There is a dearth of compressed-sensing localization in the domain of underwater acoustic sensor networks (UASNs). To address this limitation, this paper proposes SAP2: a Sparse-sensing Acoustic Positioning scheme for Stratified and Perturbed UASNs. Three conditions of underwater perturbation are defined, namely, Spin perturbation, Rectilinear dispersion condition, and Radially perturbed condition to model the sudden disturbances in the underwater network topology. Then, “Footprint Variation” is proposed to express the behavior of UASN node topology. Theorem 2.2.b is proposed for the exact retrieval of sparsely deployed UASN location under perturbation conditions. The derivation of a unique solution to the insertion vector in Lemma 3.1.a holds the estimated location of target, necessitating the incoherence of the sensing matrix with the basis vector. Block matrix representation of the coefficients is derived in Lemma 3.1.b. Invertibility of the block matrix is proven in Lemma 3.1.c to establish sparsity of underwater sensor networks. An example is illustrated with a realistic scenario to observe parameters such as correlation of sparse coefficients, distinctness of discretized samples and footprint variation based on perturbation. Footprint variation is found to be below 100m2 for uncorrelated discrete measurements using SAP2 technique. Through rigorous mathematical justification and realistic underwater channel scenario, it is established that compressed sensing based underwater localization is feasible for a sparse sensor network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({\mathbf{A}}\left( \alpha \right)\) :

Function representing fractional loss in grid insertion

\(a\), \(b\) :

Distinct solution to discrete UASN positioning equations

\(C^{A.S}\), \(C^{{\left( {n.A.S} \right)}}\) :

Positive constants for acoustically stratified and unstratified path, respectively

\(C_{g}\), \(C_{g}^{{\left( {A.S} \right)}}\), \(C_{g}^{{\left( {n.A.S} \right)}}\) :

Cumulative covariances: overall, acoustically stratified, acoustically unstratified

\({\mathbf{d}}\) :

Target baseline measurements

\(d\left( {\alpha_{i} ,\alpha_{j} } \right)\) :

Generalized distance between ith and jth instance of triangulation \(\alpha\)

\({\mathbf{F}}\) :

Sound speed profile vector

\(g\) :

Tidal constant

\(G\) :

Discrete lattice framework

\(h_{n,m}\) :

Discrete time media interface between \(m^{th}\) UAN and \(n^{th}\) USN

\(K\) :

Function on which grid insertion depends

\(L.L.R^{p} \left( {x_{m} \left( j \right)} \right)\) :

Log likelihood ratio of \(x_{m} \left( j \right)\)

\({\mathbf{m}}\) :

Orthogonal coefficient vector

\(\left( {n.A.S} \right)\),\(\left( {A.S} \right)\) :

Acoustically unstratified path, acoustically stratified path

\({\mathbf{s}}\) :

Sensing matrix

\({\mathbf{t}}_{x}\) :

Number of transmission round trip times

\(V\left( \alpha \right)\) :

Insertion function for triangulation \(\alpha\)

\(\delta_{n,m}^{\left( l \right)} \left( j \right)\) :

Transient ocean current perturbation

\(\mu\) :

Perturbation sensitivity matrix

\(\rho_{\alpha }\) :

Correlation function

\(\Theta\) :

Vector which stores indices of non-zero elements

\(\Delta\) :

Generalized Footprint variation

\(\Phi\) :

Search space for target in the next discrete-time domain

\(\varepsilon\) :

Measurement noise

\(\hat{\wp }\left( \alpha \right)\) :

Time shift within the insertion function

AUV:

Autonomous underwater vehicle

CRLB:

Cramer Rao lower bound

UAN:

Underwater anchor nodes

UASN:

Underwater Acoustic Sensor network

USN:

Underwater sensor nodes

References

  1. Cao, H., Chan, Y. T., & So, H. C. (2020). Compressive TDOA estimation: Cramér-Rao bound and incoherent processing. IEEE Transactions on Aerospace and Electronic Systems, 56(4), 3326–3331. https://doi.org/10.1109/TAES.2020.2966095

    Article  Google Scholar 

  2. Li, J., Wang, C., Zheng, Q., & Qian, Z. (2019). Leakage localization for long distance pipeline based on compressive sensing. IEEE Sensors Journal, 19(16), 6795–6801. https://doi.org/10.1109/JSEN.2019.2912157

    Article  Google Scholar 

  3. Qian, P., Guo, Y., & Li, N. (2019). Multitarget localization with inaccurate sensor locations via variational EM algorithm. IEEE Sensors Letters, 3(2), 2019–2022. https://doi.org/10.1109/LSENS.2018.2889817

    Article  Google Scholar 

  4. Ke, W., & Wang, T. (2018). Enhanced CS-based device-free localization with RF Sensor networks. IEEE Communications Letters, 22(12), 2503–2506. https://doi.org/10.1109/LCOMM.2018.2876896

    Article  Google Scholar 

  5. Zhang, R., Zhong, W. D., Qian, K., Zhang, S., & Du, P. (2018). A reversed visible light multitarget localization system via sparse matrix reconstruction. IEEE Internet of Things Journal, 5(5), 4223–4230. https://doi.org/10.1109/JIOT.2018.2849375

    Article  Google Scholar 

  6. Tang, Y., & Pedrycz, W. (2021). Oscillation-bound estimation of perturbations under bandler-kohout subproduct. IEEE Transactions on Cybernetics, 3, 1–14. https://doi.org/10.1109/TCYB.2020.3025793

    Article  Google Scholar 

  7. Abdelhay, M. A., Korany, N. O., & El-Khamy, S. E. (2021). Synthesis of uniformly weighted sparse concentric ring arrays based on off-grid compressive sensing framework. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2021.3052174

    Article  Google Scholar 

  8. Ma, L., Huang, M., Yang, S., Wang, R., & Wang, X. (2021). An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2020.3041212

    Article  Google Scholar 

  9. Xie, X., Lam, J., Fan, C., Wang, X., & Kwok, K. W. (2021). Energy-to-peak output tracking control of actuator saturated periodic piecewise time-varying systems with nonlinear perturbations. IEEE Transactions on Systems, Man, and Cybernetics: Systems,. https://doi.org/10.1109/TSMC.2021.3049524

    Article  Google Scholar 

  10. Xiao, H., Zhang, H., Yang, C., Zhao, X., & Li, B. (2020). Regularized spectral clustering with entropy perturbation. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2020.3039036

    Article  Google Scholar 

  11. Agarwal, A., Singh, R., Vatsa, M., & Ratha, N. K. (2020). Image transformation based defense against adversarial perturbation on deep learning models. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/tdsc.2020.3027183

    Article  Google Scholar 

  12. Ghadiri-Modarres, M., & Mojiri, M. (2020). Normalized extremum seeking and its application to nonholonomic source localization. IEEE Transactions on Automatic Control. https://doi.org/10.1109/tac.2020.3004786

    Article  MATH  Google Scholar 

  13. Yan, J., Zhao, H., Pu, B., Luo, X., Chen, C., & Guan, X. (2020). Energy-efficient target tracking with UASNs: a consensus-based bayesian approach. IEEE Transactions on Automation Science and Engineering, 17(3), 1361–1375. https://doi.org/10.1109/TASE.2019.2950702

    Article  Google Scholar 

  14. Yan, J., Zhao, H., Wang, Y., Luo, X., & Guan, X. (2019). Asynchronous localization for UASNs: an unscented transform-based method. IEEE Signal Processing Letters, 26(4), 602–606. https://doi.org/10.1109/LSP.2019.2902273

    Article  Google Scholar 

  15. Liu, Z., Yang, T., Xu, W., Yu, J., McFarland, D. M., & Lu, H. (2020). Underwater acoustic positioning with a single beacon and a varied baseline for a multijointed AUV in the deep ocean. IET Radar, Sonar and Navigation, 14(5), 669–676. https://doi.org/10.1049/iet-rsn.2019.0330

    Article  Google Scholar 

  16. Gong, Z., Li, C., & Jiang, F. (2018). AUV-aided joint localization and time synchronization for underwater acoustic sensor networks. IEEE Signal Processing Letters, 25(4), 477–481. https://doi.org/10.1109/LSP.2018.2799699

    Article  Google Scholar 

  17. Yan, J., Zhang, X., Luo, X., Wang, Y., Chen, C., & Guan, X. (2018). Asynchronous localization with mobility prediction for underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 67(3), 2543–2556. https://doi.org/10.1109/TVT.2017.2764265

    Article  Google Scholar 

  18. Sun, D., Ding, J., Zheng, C., & Huang, W. (2019). An underwater acoustic positioning algorithm for compact arrays with arbitrary configuration. IEEE Journal on Selected Topics in Signal Processing, 13(1), 120–130. https://doi.org/10.1109/JSTSP.2019.2899732

    Article  Google Scholar 

  19. Falsone, A., & Prandini, M. (2017). A randomized approach to probabilistic footprint estimation of a space debris uncontrolled reentry. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2657–2666. https://doi.org/10.1109/TITS.2017.2654511

    Article  Google Scholar 

  20. Misra, S., Ojha, T., & Mondal, A. (2015). Game-theoretic topology control for opportunistic localization in sparse underwater sensor networks. IEEE Transactions on Mobile Computing, 14(5), 990–1003. https://doi.org/10.1109/TMC.2014.2338293

    Article  Google Scholar 

  21. Zhang, L., Zhang, T., Shin, H., & Xu, X. (2021). Efficient underwater acoustical localization method based on time difference and bearing measurements. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2020.3045193

    Article  Google Scholar 

  22. Yan, J., Guo, D., Luo, X., & Guan, X. (2020). AUV-aided localization for underwater acoustic sensor networks with current field estimation. IEEE Transactions on Vehicular Technology, 69(8), 8855–8870. https://doi.org/10.1109/TVT.2020.2996513

    Article  Google Scholar 

  23. Prateek, & Arya, R. (2021). Range free localization technique under erroneous estimation in wireless sensor networks. The Journal of Supercomputing. https://doi.org/10.1007/s11227-021-04075-x

    Article  Google Scholar 

  24. Liu, B., Tangy, X., Tharmarasa, R., Kirubarajan, T., Jassemi, R., & Halle, S. (2020). Underwater target tracking in uncertain multipath ocean environments. IEEE Transactions on Aerospace and Electronic Systems. https://doi.org/10.1109/taes.2020.3003703

    Article  Google Scholar 

  25. Vybulkova, L., Vezza, M., & Brown, R. (2016). Simulating the wake downstream of a horizontal axis tidal turbine using a modified vorticity transport model. IEEE Journal of Oceanic Engineering, 41(2), 296–301. https://doi.org/10.1109/JOE.2015.2429231

    Article  Google Scholar 

  26. Ramírez-Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., Cooke, R. D., & Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable Energy, 159, 238–249. https://doi.org/10.1016/j.renene.2020.05.133

    Article  Google Scholar 

  27. Stinco, P., Tesei, A., Ferri, G., Biagini, S., Micheli, M., Garau, B., & Guerrini, P. (2021). Passive acoustic signal processing at low frequency with a 3-D acoustic vector sensor hosted on a buoyancy glider. IEEE Journal of Oceanic Engineering, 46(1), 283–293. https://doi.org/10.1109/JOE.2020.2968806

    Article  Google Scholar 

  28. Alexandri, T., Shamir, Z. Z., Bigal, E., Scheinin, A., Tchernov, D., & Diamant, R. (2021). Localization of acoustically tagged marine animals in under-ranked conditions. IEEE Transactions on Mobile Computing, 20(3), 1126–1137. https://doi.org/10.1109/TMC.2019.2959765

    Article  Google Scholar 

  29. Nguyen, T. T., Idier, J., Soussen, C., & Djermoune, E.-H. (2019). Non-negative orthogonal greedy algorithms. IEEE Transactions on Signal Processing, 67(21), 5643–5658. https://doi.org/10.1109/TSP.2019.2943225

    Article  MATH  Google Scholar 

  30. Zhang, H., Liu, Y., & Lei, H. (2019). Localization from incomplete euclidean distance matrix: performance analysis for the SVD–MDS approach. IEEE Transactions on Signal Processing, 67(8), 2196–2209. https://doi.org/10.1109/TSP.2019.2904022

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhatia, R. (1997). Matrix Analysis (First.). 175 Fifth Avenue, New York: Springer-Verlag New York, Inc.

  32. Dol, H. S., Colin, M. E. G. D., Ainslie, M. A., Van Walree, P. A., & Janmaat, J. (2013). Simulation of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles. IEEE Journal of Oceanic Engineering, 38(4), 642–654. https://doi.org/10.1109/JOE.2013.2278931

    Article  Google Scholar 

  33. Liu, B., Tang, X., Tharmarasa, R., Kirubarajan, T., Jassemi, R., & Halle, S. (2020). Underwater target tracking in uncertain multipath ocean environments. IEEE Transactions on Aerospace and Electronic Systems, 56(6), 4899–4915. https://doi.org/10.1109/TAES.2020.3003703

    Article  Google Scholar 

  34. Tollefsen, C. D. S. (2021). Predicting acoustic variability: pragmatic considerations for selecting a stochastic or deterministic approach. IEEE Journal of Oceanic Engineering. https://doi.org/10.1109/JOE.2020.3046905

    Article  Google Scholar 

  35. Arunkumar, K. P., & Murthy, C. R. (2020). Soft symbol decoding in sweep-spread-carrier underwater acoustic communications: A novel variational bayesian algorithm and its analysis. IEEE Transactions on Signal Processing, 68, 2435–2448. https://doi.org/10.1109/TSP.2020.2983830

    Article  MathSciNet  Google Scholar 

  36. Otnes, R., Van Walree, P. A., & Jenserud, T. (2013). Validation of replay-based underwater acoustic communication channel simulation. IEEE Journal of Oceanic Engineering, 38(4), 689–700. https://doi.org/10.1109/JOE.2013.2262743

    Article  Google Scholar 

  37. Socheleau, F., Pottier, A., & Laot, C. (2016). W ATERMARK: BCH 1 Dataset Description, (October 2015), 3–5.

  38. Hodgkiss, W., Preisig, J., & Britain), I. of A. (Great. (2012). Kauai Acomms MURI 2011 (KAM11) Experiment. St Albans: Institute Of Acoustics.

  39. Arya, R. (2021). C-TOL: Convex triangulation for optimal node localization with weighted uncertainties. Physical Communication. https://doi.org/10.1016/j.phycom.2021.101300

    Article  Google Scholar 

  40. Gong, Z., Li, C., & Jiang, F. (2020). Analysis of the underwater multi-path reflections on doppler shift estimation. IEEE Wireless Communications Letters, 9(10), 1758–1762. https://doi.org/10.1109/LWC.2020.3003743

    Article  Google Scholar 

  41. Ojha, T., Misra, S., & Obaidat, M. S. (2020). SEAL: self-adaptive auv-based localization for sparsely deployed underwater sensor networks. Computer Communications. https://doi.org/10.1016/j.comcom.2020.02.050

    Article  Google Scholar 

  42. Zhang, P., Gan, L., Ling, C., & Sun, S. (2018). Uniform recovery bounds for structured random matrices in corrupted compressed sensing. IEEE Transactions on Signal Processing, 66(8), 2086–2097. https://doi.org/10.1109/TSP.2018.2806345

    Article  MathSciNet  MATH  Google Scholar 

  43. Selesnick, I. (2017). Sparse regularization via convex analysis. IEEE Transactions on Signal Processing, 65(17), 4481–4494. https://doi.org/10.1109/TSP.2017.2711501

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, Y., Kwong, S., Guo, H., Zhang, X., & Zhang, Q. (2017). A two-phase evolutionary approach for compressive sensing reconstruction. IEEE Transactions on Cybernetics, 47(9), 2651–2663. https://doi.org/10.1109/TCYB.2017.2679705

    Article  Google Scholar 

  45. Lin, Y., Tao, H., Tu, Y., & Liu, T. (2019). A node self-localization algorithm with a mobile anchor node in underwater acoustic sensor networks. IEEE Access, 7, 43773–43780. https://doi.org/10.1109/ACCESS.2019.2904725

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Electronics and Information Technology, Govt. of India

Funding

Ministry of Electronics and Information technology,13(29)/2020-CC&BT,Rajeev Arya.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prateek, Arya, R. An underwater localization scheme for sparse sensing acoustic positioning in stratified and perturbed UASNs. Wireless Netw 28, 241–256 (2022). https://doi.org/10.1007/s11276-021-02839-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02839-0

Keywords

Navigation